Abstract
In this paper we describe the structure of surjective isometries of the space of all generalized probability distribution functions on ℝ with respect to the Kolmogorov-Smirnov metric.
[1] DOLINAR, G.— MOLNÁR, L.: Isometries of the space of distribution functions with respect to the Kolmogorov-Smirnov metric, J. Math. Anal. Appl. 348 (2008), 494–498. http://dx.doi.org/10.1016/j.jmaa.2008.07.05410.1016/j.jmaa.2008.07.054Search in Google Scholar
[2] FELLER, W.: An Introduction to Probability Theory and its Applications, Vol. II, John Wiley and Sons, New York, 1971. Search in Google Scholar
[3] FLEMING, R. J.— JAMISON, J. E.: Isometries on Banach Spaces: Function Spaces. Vol. 1. Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 129, CRC Press, Boca Raton, FL, 2002. 10.1201/9781420026153Search in Google Scholar
[4] FLEMING, R. J.— JAMISON, J. E.: Isometries on Banach Spaces: Vector-valued Function Spaces. Vol. 2. Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 138, CRC Press, Boca Raton, FL, 2007. http://dx.doi.org/10.1201/978142001020610.1201/9781420010206Search in Google Scholar
[5] MOLNÁR, L.: Kolmogorov-Smirnov isometries and affine automorphisms of spaces of distribution functions, Cent. Eur. J. Math. 9 (2011), 789–796. http://dx.doi.org/10.2478/s11533-011-0034-y10.2478/s11533-011-0034-ySearch in Google Scholar
[6] SHIRYAEV, A. N.: Probability. Grad. Texts in Math. 95, Springer-Verlag, Berlin, 1996. 10.1007/978-1-4757-2539-1Search in Google Scholar
© 2014 Mathematical Institute, Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.