Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter November 15, 2014

The exponential Diophantine equation x2 + (3n 2 + 1)y = (4n 2 + 1)z

  • Jianping Wang EMAIL logo , Tingting Wang and Wenpeng Zhang
From the journal Mathematica Slovaca

Abstract

Let n be a positive integer. In this paper, using the results on the existence of primitive divisors of Lucas numbers and some properties of quadratic and exponential diophantine equations, we prove that if n ≡ 3 (mod 6), then the equation x 2 + (3n 2 + 1)y = (4n 2 + 1)z has only the positive integer solutions (x, y, z) = (n, 1, 1) and (8n 3 + 3n, 1, 3).

[1] BILU, Y.— HANROT, G.— VOUTIER, P. M. (with an appendix by MIGNOTTE, M.): Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75–122. Search in Google Scholar

[2] BUGEAUD, Y.: On some exponential diophantine equations, Monatsh. Math. 132 (2001), 93–97. http://dx.doi.org/10.1007/s00605017004610.1007/s006050170046Search in Google Scholar

[3] HU, Y.-Z.— LIU, R.-X.: On the solutions of the exponential diophantine equation x 2 + (3a 2 + 1)m = (4a 2 + 1)n, J. Sichuan Univ. Nat. Sci. Ed. 43 (2006), 41–46. Search in Google Scholar

[4] HU, Y.-Z.— LIU, R.-X.— LE, M.-H.: The diophantine equation x 2 + D m = p n, Acta Arith. 52 (1989), 255–265. 10.4064/aa-52-3-255-265Search in Google Scholar

[5] LE, M.-H.: some exponential diophantine equations I: The equation D 1x 2-D 2y 2 = λk z, J. Number Theory 55 (1995), 209–221. http://dx.doi.org/10.1006/jnth.1995.113810.1006/jnth.1995.1138Search in Google Scholar

[6] Z.-W. LIU: On the generalized Ramanujan-Nagell equation x 2 + D m = p n, Acta Math. Sinica (Chin. Ser.) 51 (2008), 809–814 (Chinese). http://dx.doi.org/10.1007/s10114-007-5324-810.1007/s10114-007-5324-8Search in Google Scholar

[7] MORDELL, L. J.: Diophantine Equations, Academic Press, London, 1969. Search in Google Scholar

[8] NAGELL, T.: Über die Darstellung ganzer Zahlen durch eine indefinite binäre quadratische Form, Arch. Math. (Basel) 2 (1950), 161–165. http://dx.doi.org/10.1007/BF0203877310.1007/BF02038773Search in Google Scholar

[9] VOUTIER, P. M.: Primitive divisors of Lucas and Lehmer sequences, Math. Comp. 64 (1995), 869–888. http://dx.doi.org/10.1090/S0025-5718-1995-1284673-610.1090/S0025-5718-1995-1284673-6Search in Google Scholar

[10] YANG, S.-C.: A note on the solutions of the generalized Ramanujan-Nagell equation x 2 + D m = p n, Acta Math. Sinica (Chin. Ser.) 50 (2007), 943–948 (Chinese). Search in Google Scholar

[11] YUAN, P.-Z.— HU, Y.-Z.: On the diophantine equation x 2+D m = p n, J. Number Theory 111 (2005), 144–153. http://dx.doi.org/10.1016/j.jnt.2004.11.00510.1016/j.jnt.2004.11.005Search in Google Scholar

Published Online: 2014-11-15
Published in Print: 2014-10-1

© 2014 Mathematical Institute, Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 3.10.2023 from https://www.degruyter.com/document/doi/10.2478/s12175-014-0265-z/html
Scroll to top button