Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 13, 2013

Glioma cell migration and invasion as potential target for novel treatment strategies

  • Ulrike Naumann EMAIL logo , Patrick Harter , Jennifer Rubel , Elena Ilina , Anna-Eva Blank , Hugo Esteban and Michel Mittelbronn


Diffuse human gliomas constitute a group of most treatment-refractory tumors even if maximum treatment strategies including neurosurgical resection followed by combined radio-/chemotherapy are applied. In contrast to most other neoplasms, diffusely infiltrating gliomas invade the brain along pre-existing structures such as axonal tracts and perivascular spaces. Even in cases of early diagnosis single or small clusters of glioma cells are already encountered far away from the main tumor bulk. Complex interactions between glioma cells and the surrounding extracellular matrix and considerable changes in the cytoskeletal apparatus are prerequisites for the cellular movement of glioma cells through the brain thereby escaping from most current treatments. This review provides an overview about classical and current concepts of glioma cell migration/invasion and promising preclinical treatment approaches.

[1] Youland R.S., Schomas D.A., Brown P.D., Nwachukwu C., Buckner J. C., Giannini C., et al., Changes in presentation, treatment, and outcomes of adult low-grade gliomas over the past fifty years, Neuro Oncol., 2013, 15, 1102–1110 in Google Scholar

[2] Chang S.M., Parney I.F., Huang W., Anderson F.A. Jr., Asher A.L., Bernstein M., et al., Patterns of care for adults with newly diagnosed malignant glioma, JAMA, 2005, 293: 557–564 in Google Scholar

[3] Fisher J.L., Schwartzbaum J.A., Wrensch M., Berger M.S., Evaluation of epidemiologic evidence for primary adult brain tumor risk factors using evidence-based medicine, Prog. Neurol. Surg., 2006, 19, 54–79 in Google Scholar

[4] Wrensch M., Minn Y., Chew T., Bondy M., Berger M.S., Epidemiology of primary brain tumors: current concepts and review of the literature, Neuro Oncol., 2002, 4, 278–299 10.1093/neuonc/4.4.278Search in Google Scholar

[5] Ohgaki H., Kim Y.H., Steinbach J.P., Nervous system tumors associated with familial tumor syndromes, Curr. Opin. Neurol., 2010, 23, 583–591 in Google Scholar

[6] Ohgaki H., Kleihues P., Epidemiology and etiology of gliomas, Acta Neuropathol., 2005, 109, 93–108 in Google Scholar

[7] Johnson D.R., O’Neill B.P., Glioblastoma survival in the United States before and during the temozolomide era, J. Neurooncol., 2012, 107, 359–364 in Google Scholar

[8] Ohgaki H., Kleihues P., Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas, J. Neuropathol. Exp. Neurol., 2005, 64, 479–489 10.1093/jnen/64.6.479Search in Google Scholar

[9] Laperriere N., Zuraw L., Cairncross G., Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review, Radiother. Oncol., 2002, 64, 259–273 in Google Scholar

[10] Claes A., Idema A.J., Wesseling P., Diffuse glioma growth: a guerilla war, Acta Neuropathol., 2007, 114, 443–458 in Google Scholar PubMed PubMed Central

[11] Louis D.N., Ohgaki H., Wiestler O.D., Cavenee W.K., Burger P.C., Jouvet A., et al., The 2007 WHO classification of tumours of the central nervous system, Acta Neuropathol., 2007, 114, 97–109 in Google Scholar

[12] Scherer H.J., The forms of growth in gliomas and their practical significance, Brain, 1940, 63, 1–35 in Google Scholar

[13] Giese A., Loo M.A., Tran N., Haskett D., Coons S.W., Berens M.E., Dichotomy of astrocytoma migration and proliferation, Int. J. Cancer, 1996, 67, 275–282<275::AID-IJC20>3.0.CO;2-910.1002/(SICI)1097-0215(19960717)67:2<275::AID-IJC20>3.0.CO;2-9Search in Google Scholar

[14] Godlewski J., Bronisz A., Nowicki M.O., Chiocca E.A., Lawler S., microRNA-451: a conditional switch controlling glioma cell proliferation and migration, Cell Cycle, 2010, 9, 2742–2748 in Google Scholar

[15] Tan X., Wang S., Yang B., Zhu L., Yin B., Chao T., et al., The CREB-miR-9 negative feedback minicircuitry coordinates the migration and proliferation of glioma cells, PLoS One, 2012, 7, e49570 in Google Scholar

[16] Höring E., Harter P.N., Seznec J., Schittenhelm J., Bühring H.J., Bhattacharyya S., et al., The “go or grow” potential of gliomas is linked to the neuropeptide processing enzyme carboxypeptidase E and mediated by metabolic stress, Acta Neuropathol., 2012, 124, 83–97 in Google Scholar

[17] Farin A., Suzuki S.O., Weiker M., Goldman J.E., Bruce J.N., Canoll P., Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis, Glia, 2006, 53, 799–808 in Google Scholar

[18] Wiranowska M., Rojiani M.V., Extracellular matrix microenvironment in glioma progression, In: Ghosh A. (ed.) Glioma — exploring its biology and practical relevance, InTech, Rijeka, Croatia, 2011 10.5772/24666Search in Google Scholar

[19] Ram R., Lorente G., Nikolich K., Urfer R., Foehr E., Nagavarapu U., Discoidin domain receptor-1a (DDR1a) promotes glioma cell invasion and adhesion in association with matrix metalloproteinase-2, J. Neurooncol., 2006, 76, 239–248 in Google Scholar

[20] Ulrich T.A., de Juan Pardo E.M., Kumar S., The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells, Cancer Res., 2009, 69, 4167–4174 in Google Scholar

[21] Bellail A.C., Hunter S.B., Brat D.J., Tan C., Van Meir E.G., Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion, Int. J. Biochem. Cell. Biol., 2004, 36, 1046–1069 in Google Scholar

[22] Forsyth P.A., Wong H., Laing T.D., Rewcastle N.B., Morris D.G., Muzik H., et al., Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas, Br. J. Cancer, 1999, 79, 1828–1835 10.1038/sj.bjc.6690291Search in Google Scholar

[23] Wang M., Wang T., Liu S., Yoshida D., Teramoto A., The expression of matrix metalloproteinase-2 and -9 in human gliomas of different pathological grades, Brain Tumor Pathol., 2003, 20, 65–72 in Google Scholar

[24] Deryugina E.I., Bourdon M.A., Luo G.X., Reisfeld R.A., Strongin A., Matrix metalloproteinase-2 activation modulates glioma cell migration, J. Cell. Sci., 1997, 110, 2473–2482 10.1242/jcs.110.19.2473Search in Google Scholar

[25] VanMeter T.E., Rooprai H.K., Kibble M.M., Fillmore H.L., Broaddus W.C., Pilkington G.J., The role of matrix metalloproteinase genes in glioma invasion: co-dependent and interactive proteolysis, J Neurooncol., 2001, 53, 213–235 in Google Scholar

[26] Rome C., Arsaut J., Taris C., Couillaud F., Loiseau H., MMP-7 (matrilysin) expression in human brain tumors, Mol. Carcinog., 2007, 46, 446–452 in Google Scholar

[27] Wild-Bode C., Weller M., Wick W., Molecular determinants of glioma cell migration and invasion, J. Neurosurg., 2001, 94, 978–984 in Google Scholar

[28] Guo P., Imanishi Y., Cackowski F.C., Jarzynka M.J., Tao H.Q., Nishikawa R., et al., Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of human glioma, Am. J. Pathol., 2005, 166, 877–890 in Google Scholar

[29] Morrison C.J., Butler G.S., Rodriguez D., Overall C.M., Matrix metalloproteinase proteomics: substrates, targets, and therapy, Curr. Opin. Cell. Biol., 2009, 21, 645–653 in Google Scholar PubMed

[30] Sato H., Takino T., Coordinate action of membrane-type matrix metalloproteinase-1 (MT1-MMP) and MMP-2 enhances pericellular proteolysis and invasion, Cancer Sci., 2010, 101, 843–847 in Google Scholar PubMed

[31] Sameshima T., Nabeshima K., Toole B.P., Yokogami K., Okada Y., Goya T., et al., Expression of emmprin (CD147), a cell surface inducer of matrix metalloproteinases, in normal human brain and gliomas, Int. J. Cancer., 2000, 88, 21–27<21::AID-IJC4>3.0.CO;2-S10.1002/1097-0215(20001001)88:1<21::AID-IJC4>3.0.CO;2-SSearch in Google Scholar

[32] Sameshima T., Nabeshima K., Toole B.P., Yokogami K., Okada Y., Goya T., et al., Glioma cell extracellular matrix metalloproteinase inducer (EMMPRIN) (CD147) stimulates production of membrane-type matrix metalloproteinases and activated gelatinase A in co-cultures with brain-derived fibroblasts, Cancer Lett., 2000, 157, 177–184 in Google Scholar

[33] Platten M., Wick W., Weller M., Malignant glioma biology: role for TGFbeta in growth, motility, angiogenesis, and immune escape, Microsc. Res. Tech., 2001, 52, 401–410<401::AID-JEMT1025>3.0.CO;2-C10.1002/1097-0029(20010215)52:4<401::AID-JEMT1025>3.0.CO;2-CSearch in Google Scholar

[34] Wick W., Platten M., Weller M., Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta, J. Neurooncol., 2001, 53, 177–185 in Google Scholar

[35] Lettau I., Hattermann K., Held-Feindt J., Brauer R., Sedlacek R., Mentlein R., Matrix metalloproteinase-19 is highly expressed in astroglial tumors and promotes invasion of glioma cells, J. Neuropathol. Exp. Neurol., 2010, 69, 215–223 in Google Scholar

[36] Stojic J., Hagemann C., Haas S., Herbold C., Kühnel S., Gerngras S., et al. Expression of matrix metalloproteinases MMP-1, MMP-11 and MMP-19 is correlated with the WHO-grading of human malignant gliomas, Neurosci. Res., 2008, 60, 40–49 in Google Scholar

[37] Deng Y., Li W., Li Y., Yang H., Xu H., Liang S., et al., Expression of Matrix Metalloproteinase-26 promotes human glioma U251 cell invasion in vitro and in vivo, Oncol. Rep., 2010, 23, 69–78 10.3892/or_00000607Search in Google Scholar

[38] Brauer R., Beck I.M., Roderfeld M., Roeb E., Sedlacek R., Matrix metalloproteinase-19 inhibits growth of endothelial cells by generating angiostatin-like fragments from plasminogen, BMC Biochem., 2011, 12, 38 in Google Scholar

[39] Fukuda H., Mochizuki S., Abe H., Okano H.J., Hara-Miyauchi C., Okano H., et al. Host-derived MMP-13 exhibits a protective role in lung metastasis of melanoma cells by local endostatin production, Br. J. Cancer, 2011, 105, 1615–1624 in Google Scholar

[40] Hamano Y., Zeisberg M., Sugimoto H., Lively J.C., Maeshima Y., Yang C., et al., Physiological levels of tumstatin, a fragment of collagen IV α3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via αVβ3 integrin, Cancer Cell, 2003, 3, 589–601 in Google Scholar

[41] Nakano A., Tani E., Miyazaki K., Yamamoto Y., Furuyama J., Matrix metallo-proteinases and tissue inhibitors of metalloproteinases in human gliomas, J. Neurosurg., 1995, 83, 298–307 in Google Scholar

[42] Lampert K., Machein U., Machein M.R., Conca W., Peter H.H., Volk B., Expression of matrix metalloproteinases and their tissue inhibitors in human brain tumors, Am. J. Pathol., 1998, 153, 429–437 in Google Scholar

[43] Nakada M., Kita D., Futami K., Yamashita J., Fujimoto N., Sato H., et al., Roles of membrane type 1 matrix metalloproteinase and tissue inhibitor of metalloproteinases 2 in invasion and dissemination of human malignant glioma, J. Neurosurg., 2001, 94, 464–473 in Google Scholar

[44] Wang Z., Juttermann R., Soloway P.D., TIMP-2 is required for efficient activation of proMMP-2 in vivo, J. Biol. Chem., 2000, 275, 26411–26415 in Google Scholar

[45] Lu K.V., Jong K.A., Rajasekaran A.K., Cloughesy T.F., Mischel P.S., Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activation and cell invasion in a human glioblastoma cell line, Lab. Invest., 2004, 84, 8–20 in Google Scholar

[46] Surawska H., Ma P.C., Salgia R., The role of ephrins and Eph receptors in cancer, Cytokine Growth Factor Rev., 2004, 15, 419–433 in Google Scholar

[47] Chedotal A., Kerjan G., Moreau-Fauvarque C., The brain within the tumor: new roles for axon guidance molecules in cancers, Cell Death Differ., 2005, 12, 1044–1056 in Google Scholar

[48] Hedgecock E.M., Culotti J.G., Hall D.H., The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans, Neuron, 1990, 4, 61–85 in Google Scholar

[49] Ishii N., Wadsworth W.G., Stern B.D., Culotti J.G., Hedgecock E.M., UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans, Neuron, 1992, 9, 873–881 in Google Scholar

[50] Wadsworth W.G., Bhatt H., Hedgecock E.M., Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans, Neuron, 1996, 16, 35–46 in Google Scholar

[51] Hedgecock E.M., Norris C.R., Netrins evoke mixed reactions in motile cells, Trends Genet., 1997, 13, 251–253 in Google Scholar

[52] Serafini T., Colamarino S.A., Leonardo E.D., Wang H., Beddington R., Skarnes W.C., et al., Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system, Cell, 1996, 87, 1001–1014 in Google Scholar

[53] Harter P.N., Bunz B., Dietz K., Hoffmann K., Meyermann R., Mittelbronn M., Spatio-temporal deleted in colorectal cancer (DCC) and netrin-1 expression in human foetal brain development, Neuropathol. Appl. Neurobiol., 2010, 36, 623–635 in Google Scholar PubMed

[54] Meyerhardt J.A., Caca K., Eckstrand B.C., Hu G., Lengauer C., Banavali S., et al., Netrin-1: interaction with deleted in colorectal cancer (DCC) and alterations in brain tumors and neuroblastomas, Cell Growth Differ., 1999, 10, 35–42 Search in Google Scholar

[55] Jarjour A.A., Durko M., Luk T.L., Marcal N., Shekarabi M., Kennedy T.E., Autocrine netrin function inhibits glioma cell motility and promotes focal adhesion formation, PLoS One, 2011, 6, e25408 in Google Scholar PubMed PubMed Central

[56] Manitt C., Colicos M.A., Thompson K.M., Rousselle E., Peterson A.C., Kennedy T.E. Widespread expression of netrin-1 by neurons and oligodendrocytes in the adult mammalian spinal cord, J. Neurosci., 2001, 21, 3911–3922 10.1523/JNEUROSCI.21-11-03911.2001Search in Google Scholar

[57] Mehlen P., Thibert C., Dependence receptors: between life and death, Cell. Mol. Life Sci., 2004, 61, 1854–1866 in Google Scholar PubMed

[58] Forcet C., Stein E., Pays L., Corset V., Llambi F., Tessier-Lavigne M., et al., Netrin-1-mediated axon outgrowth requires deleted in colorectal cancer-dependent MAPK activation, Nature, 2002, 417, 443–447 in Google Scholar PubMed

[59] Shekarabi M., Kennedy T.E., The netrin-1 receptor DCC promotes filopodia formation and cell spreading by activating Cdc42 and Rac1, Mol. Cell. Neurosci., 2002, 19, 1–17 in Google Scholar PubMed

[60] Shekarabi M., Moore S.W., Tritsch N.X., Morris S.J., Bouchard J.F., Kennedy T.E., Deleted in colorectal cancer binding netrin-1 mediates cell substrate adhesion and recruits Cdc42, Rac1, Pak1, and N-WASP into an intracellular signaling complex that promotes growth cone expansion, J. Neurosci., 2005, 25, 3132–3141 in Google Scholar PubMed PubMed Central

[61] Rajasekharan S., Baker K.A., Horn K.E., Jarjour A.A., Antel J.P., Kennedy T.E., Netrin 1 and Dcc regulate oligodendrocyte process branching and membrane extension via Fyn and RhoA, Development, 2009, 136, 415–426 in Google Scholar PubMed

[62] van Nimwegen M.J., van de Water B., Focal adhesion kinase: a potential target in cancer therapy, Biochem. Pharmacol., 2007, 73, 597–609 in Google Scholar PubMed

[63] Shimizu A., Nakayama H., Wang P., König C., Akino T., Sandlund J., et al., Netrin-1 promotes glioblastoma cell invasiveness and angiogenesis by multiple pathways including activation of RhoA, cathepsin B, and cAMP-response element-binding protein, J. Biol. Chem., 2013, 288, 2210–2222 in Google Scholar PubMed PubMed Central

[64] Wilson B.D., Ii M., Park K.W., Suli A., Sorensen L.K., Larrieu-Lahargue F., et al., Netrins promote developmental and therapeutic angiogenesis, Science, 2006, 313, 640–644 in Google Scholar PubMed PubMed Central

[65] Larrivée B., Freitas C., Trombe M., Lv X, DeLafarge B., Yuan L., et al., Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis, Genes Dev., 2007, 21, 2433–2447 in Google Scholar PubMed PubMed Central

[66] Bouvree K., Larrivée B., Lv X., Yuan L., DeLafarge B., Freitas C., et al., Netrin-1 inhibits sprouting angiogenesis in developing avian embryos, Dev. Biol., 2008, 318, 172–183 in Google Scholar PubMed

[67] Hirai H., Maru Y., Hagiwara K., Nishida J., Takaku F., A novel putative tyrosine kinase receptor encoded by the eph gene, Science, 1987, 238, 1717–1720 in Google Scholar PubMed

[68] Pasquale E.B., Eph receptors and ephrins in cancer: bidirectional signalling and beyond, Nat. Rev. Cancer, 2010, 10, 165–180 in Google Scholar PubMed PubMed Central

[69] Beauchamp A., Debinski W., Ephs and ephrins in cancer: ephrin-A1 signalling, Semin. Cell. Dev. Biol., 2012, 23, 109–115 in Google Scholar PubMed PubMed Central

[70] Chen J., Regulation of tumor initiation and metastatic progression by Eph receptor tyrosine kinases, Adv. Cancer Res., 2012, 114, 1–20 10.1016/B978-0-12-386503-8.00001-6Search in Google Scholar PubMed PubMed Central

[71] Fukai J., Yokote H., Yamanaka R., Arao T., Nishio K., Itakura T., EphA4 promotes cell proliferation and migration through a novel EphA4-FGFR1 signaling pathway in the human glioma U251 cell line, Mol. Cancer Ther., 2008, 7, 2768–2778 in Google Scholar PubMed

[72] Nakada M., Hayashi Y., Hamada J., Role of Eph/ephrin tyrosine kinase in malignant glioma, Neuro Oncol., 2011, 13, 1163–1170 in Google Scholar

[73] Ying M., Wang S., Sang Y., Sun Y., Lal B., Goodwin C.R., et al., Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition, Oncogene, 2011, 30, 3454–3467 in Google Scholar

[74] Holmberg J., Armulik A., Senti K.A., Edoff K., Spalding K., Momma S., et al., Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis, Genes Dev., 2005. 19, 462–471 in Google Scholar

[75] Nakada M., Niska J.A., Miyamori H., McDonough W.S., Wu J., Sato H., et al., The phosphorylation of EphB2 receptor regulates migration and invasion of human glioma cells, Cancer Res., 2004, 64, 3179–3185 in Google Scholar

[76] Fukushima K., Ueno Y., Inoue J., Kanno N., Shimosegawa T., Filopodia formation via a specific Eph family member and PI3K in immortalized cholangiocytes, Am. J. Physiol. Gastrointest. Liver Physiol., 2006, 291, G812–819 in Google Scholar

[77] Steinle J.J., Meininger C.J., Chowdhury U., Wu G., Granger H.J., Role of ephrin B2 in human retinal endothelial cell proliferation and migration, Cell Signal., 2003, 15, 1011–1017 in Google Scholar

[78] Miao H., Wei B.R., Peehl D.M., Li Q., Alexandrou T., Schelling J.R., et al., Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat. Cell Biol., 2001, 3, 527–530 in Google Scholar

[79] Brose K., Bland K.S., Wang K.H., Arnott D., Henzel W., Goodman C.S., et al., Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance, Cell, 1999, 96, 795–806 in Google Scholar

[80] Wang K.H., Brose K., Arnott D., Kidd T., Goodman C.S., Henzel W., et al., Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching, Cell, 1999, 96, 771–784 in Google Scholar

[81] Ballard M.S., Hinck L., A roundabout way to cancer, Adv. Cancer Res., 2012, 114, 187–235 10.1016/B978-0-12-386503-8.00005-3Search in Google Scholar PubMed PubMed Central

[82] Dickinson R.E., Dallol A., Bieche I., Krex D., Morton D., Maher E.R., et al., Epigenetic inactivation of SLIT3 and SLIT1 genes in human cancers, Br. J. Cancer., 2004, 91, 2071–2078 in Google Scholar

[83] Dallol A., Krex D., Hesson L., Eng C., Maher E.R., Latif F., Frequent epigenetic inactivation of the SLIT2 gene in gliomas, Oncogene, 2003, 22, 4611–4616 in Google Scholar

[84] Werbowetski-Ogilvie T.E., Seyed Sadr M., Jabado N., Angers-Loustau A., Agar N.Y., Wu J., et al., Inhibition of medulloblastoma cell invasion by Slit, Oncogene, 2006, 25, 5103–5112 10.1038/sj.onc.1209524Search in Google Scholar

[85] Mertsch S., Schmitz N., Jeibmann A., Geng J.G., Paulus W., Senner V., Slit2 involvement in glioma cell migration is mediated by Robo1 receptor, J. Neurooncol., 2008, 87, 1–7 in Google Scholar

[86] Yiin J.J., Hu B., Jarzynka M.J., Feng H., Liu K.W., Wu J.Y., et al., Slit2 inhibits glioma cell invasion in the brain by suppression of Cdc42 activity, Neuro Oncol., 2009, 11, 779–789 in Google Scholar

[87] Tessier-Lavigne M., Goodman C.S., The molecular biology of axon guidance, Science, 1996, 274, 1123–1133 in Google Scholar

[88] Yazdani U., Terman J.R., The semaphorins, Genome Biol., 2006, 7, 211 in Google Scholar

[89] Fujisawa H., Discovery of semaphorin receptors, neuropilin and plexin, and their functions in neural development, J. Neurobiol., 2004, 59, 24–33 in Google Scholar

[90] Takahashi T., Fournier A., Nakamura F., Wang L.H., Murakami Y., Kalb R.G., et al., Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors, Cell, 1999, 99, 59–69 in Google Scholar

[91] Derijck A.A., Van Erp S., Pasterkamp R.J., Semaphorin signaling: molecular switches at the midline, Trends Cell. Biol., 2010, 20, 568–576 in Google Scholar PubMed

[92] Shimizu A., Mammoto A., Italiano J.E.Jr., et al., Pravda E., Dudley A.C., Ingber D.E., et al., ABL2/ARG tyrosine kinase mediates SEMA3F-induced RhoA inactivation and cytoskeleton collapse in human glioma cells, J. Biol. Chem., 2008, 283, 27230–27238 in Google Scholar

[93] Coma S., Amin D.N., Shimizu A., Lasorella A., Iavarone A., Klagsbrun M., Id2 promotes tumor cell migration and invasion through transcriptional repression of semaphorin 3F, Cancer Res., 2010, 70, 3823–3832 in Google Scholar

[94] Karayan-Tapon L., Wager M., Guilhot J., Levillain P., Marquant C., Clarhaut J., et al., Semaphorin, neuropilin and VEGF expression in glial tumours: SEMA3G, a prognostic marker?, Br. J. Cancer, 2008, 99, 1153–1160 in Google Scholar

[95] Schwarz Q., Gu C., Fujisawa H., Sabelko K., Gertsenstein M., Nagy A., et al., Vascular endothelial growth factor controls neuronal migration and cooperates with Sema3A to pattern distinct compartments of the facial nerve, Genes Dev., 2004, 18, 2822–2834 in Google Scholar

[96] Sabag A.D., Bode J., Fink D., Kigel B., Kugler W., Neufeld G., Semaphorin-3D and semaphorin-3E inhibit the development of tumors from glioblastoma cells implanted in the cortex of the brain, PLoS One, 2012, 7, e42912 in Google Scholar

[97] Tamkun J.W., DeSimone D.W., Fonda D., Patel R.S., Buck C., Horwitz A.F., et al., Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin, Cell, 1986, 46, 271–282 in Google Scholar

[98] Hynes R.O., Cell adhesion: old and new questions, Trends Cell. Biol., 1999, 9, M33–37 in Google Scholar

[99] Hynes R.O., Integrins: a family of cell surface receptors, Cell, 1987, 48, 549–554 in Google Scholar

[100] Giancotti F.G., Ruoslahti E., Integrin signaling, Science, 1999, 285, 1028–1032 in Google Scholar PubMed

[101] Kumar C.C., Integrin αvβ3 as a therapeutic target for blocking tumor-induced angiogenesis, Curr. Drug Targets, 2003, 4, 123–131 in Google Scholar PubMed

[102] Rooprai H.K., Vanmeter T., Panou C., Schnüll S., Trillo-Pazos G., Davies D., et al., The role of integrin receptors in aspects of glioma invasion in vitro, Int. J. Dev. Neurosci., 1999, 17, 613–623 in Google Scholar

[103] Tonn J.C., Wunderlich S., Kerkau S., Klein C.E., Roosen K., Invasive behaviour of human gliomas is mediated by interindividually different integrin patterns, Anticancer Res., 1998, 18, 2599–2605 Search in Google Scholar

[104] Uhm J.H., Gladson C.L., Rao J.S., The role of integrins in the malignant phenotype of gliomas, Front. Biosci., 1999, 4, D188–199 in Google Scholar

[105] Tabatabai G., Tonn J.C., Stupp R., Weller M., The role of integrins in glioma biology and anti-glioma therapies, Curr. Pharm. Des., 2011, 17, 2402–2410 in Google Scholar

[106] Nikolopoulos S.N., Blaikie P., Yoshioka T., Guo W., Giancotti F.G., Integrin β4 signaling promotes tumor angiogenesis, Cancer Cell., 6, 2004, 471–483 in Google Scholar

[107] Guo W., Giancotti F.G., Integrin signalling during tumour progression, Nat. Rev. Mol. Cell. Biol., 2004, 5, 816–826 in Google Scholar

[108] Kwiatkowska A., Symons M., Signaling determinants of glioma cell invasion, Adv. Exp. Med. Biol., 2013, 986, 121–141 in Google Scholar

[109] Mittelbronn M., Warth A., Meyermann R., Goodman S., Weller M., Expression of integrins αvβ3 and αvβ5 and their ligands in primary and secondary central nervous system neoplasms, Histol. Histopathol., 2013, 28, 749–758 Search in Google Scholar

[110] Saitoh Y., Kuratsu J., Takeshima H., Yamamoto S., Ushio Y., Expression of osteopontin in human glioma. Its correlation with the malignancy, Lab. Invest., 1995, 72, 55–63 Search in Google Scholar

[111] Sreekanthreddy P., Srinivasan H., Kumar D.M., Nijaguna M.B., Sridevi S., Vrinda M., et al., Identification of potential serum biomarkers of glioblastoma: serum osteopontin levels correlate with poor prognosis, Cancer Epidemiol. Biomarkers Prev., 2010, 19, 1409–1422 in Google Scholar

[112] Wang Y., Yan W., Lu X., Qian C., Zhang J., Li P., et al., Overexpression of osteopontin induces angiogenesis of endothelial progenitor cells via the avbeta3/PI3K/AKT/eNOS/NO signaling pathway in glioma cells, Eur. J. Cell. Biol., 2011, 90, 642–648 in Google Scholar

[113] Kurozumi K., Ichikawa T., Onishi M., Fujii K., Date I., Cilengitide treatment for malignant glioma: current status and future direction, Neurol. Med. Chir., 2012, 52, 539–547 in Google Scholar

[114] Bar-Sagi D., Hall A., Ras and Rho GTPases: a family reunion, Cell, 2000, 103, 227–238 in Google Scholar

[115] Sahai E., Olson M.F., Marshall C.J., Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility, EMBO J., 2001, 20, 755–766 in Google Scholar

[116] Parri M., Chiarugi P., Rac and Rho GTPases in cancer cell motility control, Cell Commun. Signal., 2010, 8, 23 in Google Scholar

[117] Yamazaki D., Kurisu S., Takenawa T., Regulation of cancer cell motility through actin reorganization, Cancer Sci., 2005, 96, 379–386 in Google Scholar

[118] Yan B., Chour H.H., Peh B.K., Lim C., Salto-Tellez M., RhoA protein expression correlates positively with degree of malignancy in astrocytomas, Neurosci. Lett., 2006, 407, 124–126 in Google Scholar

[119] Ye D.Z., Field J., PAK signaling in cancer, Cell Logist., 2012, 2, 105–116 in Google Scholar

[120] Khalil B.D., El-Sibai M., Rho GTPases in primary brain tumor malignancy and invasion, J. Neurooncol., 2012, 108, 333–339 in Google Scholar

[121] Rathinam R., Berrier A., Alahari S.K., Role of Rho GTPases and their regulators in cancer progression, Front. Biosci., 2011, 16, 2561–2571 in Google Scholar

[122] Valster A., Tran N.L., Nakada M., Berens M.E., Chan A.Y., Symons M., Cell migration and invasion assays, Methods, 2005, 37, 208–215 in Google Scholar

[123] Josso F., Prou-Wartelle O., Interaction of tissue factor and factor VII at the earliest phase of coagulation, Thromb. Diath. Haemorrh. Suppl., 1965, 17, 35–44 Search in Google Scholar

[124] Contrino J., Hair G., Kreutzer D.L., Rickles F.R., In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease, Nat. Med., 1996, 2, 209–215 in Google Scholar

[125] Hamada K., Kuratsu J., Saitoh Y., Takeshima H., Nishi T., Ushio Y., Expression of tissue factor correlates with grade of malignancy in human glioma, Cancer, 1996, 77, 1877–1883<1877::AID-CNCR18>3.0.CO;2-X10.1002/(SICI)1097-0142(19960501)77:9<1877::AID-CNCR18>3.0.CO;2-XSearch in Google Scholar

[126] Magnus N., Garnier D., Rak J., Oncogenic epidermal growth factor receptor up-regulates multiple elements of the tissue factor signaling pathway in human glioma cells, Blood, 2010, 116, 815–818 in Google Scholar PubMed

[127] Rong Y., Durden D.L., Van Meir E.G., Brat D.J., ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis, J. Neuropathol. Exp. Neurol., 2006, 65, 529–539 in Google Scholar PubMed

[128] Gessler F., Voss V., Dutzmann S., Seifert V., Gerlach R., Kögel D., Inhibition of tissue factor/protease-activated receptor-2 signaling limits proliferation, migration and invasion of malignant glioma cells, Neuroscience, 2010, 165, 1312–1322 in Google Scholar PubMed

[129] Harter P.N., Dützmann S., Drott U., Zachskorn C., Hattingen E., Capper D., et al., Anti-tissue factor (TF9-10H10) treatment reduces tumor cell invasiveness in a novel migratory glioma model, Neuropathology, 2013, Epub ahead of print, doi: 10.1111/ neup.12018 10.1111/neup.12018Search in Google Scholar PubMed

[130] Kaminska B., Kocyk M., Kijewska M., TGF beta signaling and its role in glioma pathogenesis, Adv. Exp. Med. Biol., 2013, 986, 171–187 in Google Scholar PubMed

[131] Platten M., Wick W., Wild-Bode C., Aulwurm S., Dichgans J., Weller M., Transforming growth factors β1 (TGF-β1) and TGF-β2 promote glioma cell migration via up-regulation of αVβ3 integrin expression, Biochem. Biophys. Res. Commun., 2000, 268, 607–611 in Google Scholar PubMed

[132] Wick W., Naumann U., Weller M., Transforming growth factor-beta: a molecular target for the future therapy of glioblastoma, Curr. Pharm. Des., 2006, 12, 341–349 in Google Scholar PubMed

[133] Dziembowska M., Danilkiewicz M., Wesolowska A., Zupanska A., Chouaib S., Kaminska B., Cross-talk between Smad and p38 MAPK signalling in transforming growth factor beta signal transduction in human glioblastoma cells, Biochem. Biophys. Res. Commun., 2007, 354, 1101–1106 in Google Scholar PubMed

[134] Hsieh H.L., Wang H.H., Wu W.B., Chu P.J., Yang C.M., Transforming growth factor-beta1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK- and JNK-NFkappaB pathways, J. Neuroinflammation, 2010, 7, 88 in Google Scholar PubMed PubMed Central

[135] Baumann F., Leukel P., Doerfelt A., Beier C.P., Dettmer K., Oefner P.J., et al., Lactate promotes glioma migration by TGF-β2-dependent regulation of matrix metalloproteinase-2, Neuro Oncol., 2009, 11, 368–380 in Google Scholar PubMed PubMed Central

[136] Arslan F., Bosserhoff A.K., Nickl-Jockschat T., Doerfelt A., Bogdahn U., Hau P., The role of versican isoforms V0/V1 in glioma migration mediated by transforming growth factor-β2, Br. J. Cancer, 2007, 96, 1560–1568 in Google Scholar PubMed PubMed Central

[137] Ehtesham M., Min E., Issar N.M., Kasl R.A., Khan I.S., Thompson R.C., The role of the CXCR4 cell surface chemokine receptor in glioma biology, J. Neurooncol., 2013, 113, 153–162 in Google Scholar PubMed

[138] Hattermann K., Mentlein R., An infernal trio: the chemokine CXCL12 and its receptors CXCR4 and CXCR7 in tumor biology, Ann. Anat., 2013, 195, 103–110 in Google Scholar PubMed

[139] Salmaggi A., Gelati M., Pollo B., Marras C., Silvani A., Balestrini M.R., et al., CXCL12 expression is predictive of a shorter time to tumor progression in low-grade glioma: a single-institution study in 50 patients, J. Neurooncol., 2005, 74, 287–293 in Google Scholar PubMed

[140] Woerner B.M., Warrington N.M., Kung A.L., Perry A., Rubin J.B., Widespread CXCR4 activation in astrocytomas revealed by phospho-CXCR4-specific antibodies, Cancer Res., 2005, 65, 11392–11399 in Google Scholar PubMed

[141] Zagzag D., Lukyanov Y., Lan L., Ali M.A., Esencay M., Mendez O., et al., Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion, Lab. Invest., 2006, 86, 1221–1232 in Google Scholar PubMed

[142] Calatozzolo C., Maderna E., Pollo B., Gelati M., Marras C., Silvani A., et al., Prognostic value of CXCL12 expression in 40 low-grade oligodendrogliomas and oligoastrocytomas, Cancer Biol. Ther., 2006, 5, 827–832 in Google Scholar PubMed

[143] Rubin J.B., Kung A.L., Klein R.S., Chan J.A., Sun Y., Schmidt K., et al., A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors, Proc. Natl. Acad. Sci. USA, 2003, 100, 13513–13518 in Google Scholar PubMed PubMed Central

[144] Tseng D., Vasquez-Medrano D.A., Brown J.M., Targeting SDF-1/ CXCR4 to inhibit tumour vasculature for treatment of glioblastomas, Br. J. Cancer, 2011, 104, 1805–1809 in Google Scholar PubMed PubMed Central

[145] Tian Y., Nan Y., Han L., Zhang A., Wang G., Jia Z., et al., MicroRNA miR-451 down-regulates the PI3K/AKT pathway through CAB39 in human glioma, Int. J. Oncol., 2012, 40, 1105–1112 Search in Google Scholar

[146] Nan Y., Han L., Zhang A., Wang G., Jia Z., Yang Y., et al., MiRNA-451 plays a role as tumor suppressor in human glioma cells, Brain Res., 2010, 1359, 14–21 in Google Scholar PubMed

[147] Godlewski J., Nowicki M.O., Bronisz A., Nuovo G., Palatini J., De Lay M., et al., MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells, Mol. Cell, 2010, 37, 620–632 in Google Scholar PubMed PubMed Central

[148] Oellers P., Schallenberg M., Stupp T., Charalambous P., Senner V., Paulus W., et al., A coculture assay to visualize and monitor interactions between migrating glioma cells and nerve fibers, Nat. Protoc., 2009, 4, 923–927 in Google Scholar PubMed

[149] Priester M., Copanaki E., Vafaizadeh V., Hensel S., Bernreuther C., Glatzel M., et al., STAT3 silencing inhibits glioma single cell infiltration and tumor growth, Neuro Oncol., 2013, 15, 840–852 in Google Scholar PubMed PubMed Central

[150] Westphal M., Meissner H., Matschke J., Herrmann H.D., Tissue culture of human neurocytomas induces the expression of glial fibrilary acidic protein, J. Neurocytol., 1998, 27, 805–816 in Google Scholar

[151] Ernst A., Hofmann S., Ahmadi R., Becker N., Korshunov A., Engel F., et al., Genomic and expression profiling of glioblastoma stem cell-like spheroid cultures identifies novel tumor-relevant genes associated with survival, Clin. Cancer Res., 2009, 15, 6541–6550 in Google Scholar PubMed

[152] Mella O., Bjerkvig R., Schem B.C., Dahl O., Laerum O.D., A cerebral glioma model for experimental therapy and in vivo invasion studies in syngeneic BD IX rats, J. Neurooncol., 1990, 9, 93–104 in Google Scholar PubMed

[153] Huszthy P.C., Immervoll H., Wang J., Goplen D., Miletic H., Eide G.E., et al., Cellular effects of oncolytic viral therapy on the glioblastoma microenvironment, Gene Ther., 2010, 17, 202–216 in Google Scholar PubMed

[154] De Witt Hamer P.C., Van Tilborg A.A., Eijk P.P., Sminia P., Troost D., Van Noorden C.J., et al., The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids, Oncogene, 2008, 27, 2091–2096 in Google Scholar PubMed

[155] Fomchenko E.I., Holland E.C., Mouse models of brain tumors and their applications in preclinical trials, Clin. Cancer. Res., 2006, 12, 5288–5297 in Google Scholar PubMed

[156] Hambardzumyan D., Parada L.F., Holland E.C., Charest A., Genetic modeling of gliomas in mice: new tools to tackle old problems, Glia, 2011, 59, 1155–1168 in Google Scholar PubMed PubMed Central

[157] Weissenberger J., Steinbach J.P., Malin G., Spada S., Rulicke T., Aguzzi A., Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice, Oncogene, 1997, 14, 2005–2013 in Google Scholar PubMed

[158] Shih A.H., Dai C., Hu X., Rosenblum M.K., Koutcher J.A., Holland E.C., Dose-dependent effects of platelet-derived growth factor-B on glial tumorigenesis, Cancer Res., 2004, 64, 4783–4789 in Google Scholar PubMed

[159] Uhrbom L., Hesselager G., Nister M., Westermark B., Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus, Cancer Res., 1998, 58, 5275–5279 Search in Google Scholar

[160] Sottoriva A., Spiteri I., Piccirillo S.G., Touloumis A., Collins V.P., Marioni J.C., et al., Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics, Proc. Natl. Acad. Sci. USA, 2013, 110, 4009–4014 in Google Scholar PubMed PubMed Central

[161] Podlech O., Harter P.N., Mittelbronn M., Pöschel S., Naumann U., Fermented mistletoe extract as a multimodal antitumoral agent in gliomas, Evid. Based Complement. Alternat. Med., 2012, 501796 10.1155/2012/501796Search in Google Scholar PubMed PubMed Central

[162] Seznec J., Silkenstedt B., Naumann U., Therapeutic effects of the Sp1 inhibitor mithramycin A in glioblastoma, J. Neurooncol., 2011, 101, 365–377 in Google Scholar PubMed

[163] Kargiotis O., Chetty C., Gondi C.S., Tsung A.J., Dinh D.H., Gujrati M., et al., Adenovirus-mediated transfer of siRNA against MMP-2 mRNA results in impaired invasion and tumor-induced angiogenesis, induces apoptosis in vitro and inhibits tumor growth in vivo in glioblastoma, Oncogene, 2008, 27, 4830–4840 in Google Scholar PubMed PubMed Central

[164] Nasarre C., Roth M., Jacob L., Roth L., Koncina E., Thien A., et al., Peptide-based interference of the transmembrane domain of neuropilin-1 inhibits glioma growth in vivo, Oncogene, 2010, 29, 2381–2392 in Google Scholar PubMed

[165] Kesanakurti D., Chetty C., Bhoopathi P., Lakka S.S., Gorantla B., Tsung A.J., et al., Suppression of MMP-2 attenuates TNF-α induced NF-κB activation and leads to JNK mediated cell death in glioma, PLoS One, 2011, 6, e19341 in Google Scholar PubMed PubMed Central

[166] Nakabayashi H., Yawata T., Shimizu K., Anti-invasive and antiangiogenic effects of MMI-166 on malignant glioma cells, BMC Cancer, 2010, 10, 339 in Google Scholar PubMed PubMed Central

[167] Bello L., Lucini V., Carrabba G., Giussani C., Machluf M., Pluderi M., et al., Simultaneous inhibition of glioma angiogenesis, cell proliferation, and invasion by a naturally occurring fragment of human metalloproteinase-2, Cancer Res., 2001, 61, 8730–8736 Search in Google Scholar

[168] Kim M.S., Park M.J., Kim S.J., Lee C.H., Yoo H., Shin S.H., et al., Emodin suppresses hyaluronic acid-induced MMP-9 secretion and invasion of glioma cells, Int. J. Oncol., 2005, 27, 839–846 Search in Google Scholar

[169] Gondi C.S., Lakka S.S., Dinh D.H., Olivero W.C., Gujrati M., Rao J.S., Downregulation of uPA, uPAR and MMP-9 using small, interfering, hairpin RNA (siRNA) inhibits glioma cell invasion, angiogenesis and tumor growth, Neuron Glia Biol., 2004, 1, 165–176 in Google Scholar PubMed PubMed Central

[170] Reardon D.A., Akabani G., Coleman R.E., Friedman A.H., Friedman H.S., Herndon J.E.2nd, et al., Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: phase II study results, J. Clin. Oncol., 2006, 24, 115–122 in Google Scholar PubMed

[171] Senft C., Polacin M., Priester M., Seifert V., Kögel D., Weissenberger J., The nontoxic natural compound Curcumin exerts antiproliferative, anti-migratory, and anti-invasive properties against malignant gliomas, BMC Cancer, 2010, 10, 491 10.1186/1471-2407-10-491Search in Google Scholar PubMed PubMed Central

[172] Yamada S., Bu X.Y., Khankaldyyan V., Gonzales-Gomez I., McComb J.G., Laug W.E., Effect of the angiogenesis inhibitor Cilengitide (EMD 121974) on glioblastoma growth in nude mice, Neurosurgery, 2006, 5, 1304–1312 10.1227/01.NEU.0000245622.70344.BESearch in Google Scholar PubMed

[173] Reardon D.A., Fink K.L., Mikkelsen T., Cloughesy T.F., O’Neill A., Plotkin S., et al., Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J. Clin. Oncol., 2008, 26, 5610–5617 in Google Scholar PubMed

[174] Stupp R., Hegi M.E., Neyns B., Goldbrunner R., Schlegel U., Clement P.M., et al., Phase I/IIa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma, J. Clin. Oncol., 2010, 28, 2712–2718 in Google Scholar PubMed

[175] Nabors L.B., Mikkelsen T., Hegi M.E., Ye X., Batchelor T., Lesser G., et al., A safety run-in and randomized phase 2 study of cilengitide combined with chemoradiation for newly diagnosed glioblastoma (NABTT 0306), Cancer, 2012, 118 5601–5607 in Google Scholar PubMed PubMed Central

[176] Bello L., Lucini V., Giussani C., Carrabba G., Pluderi M., Scaglione F., et al., IS20I, a specific αvβ3 integrin inhibitor, reduces glioma growth in vivo, Neurosurgery, 2003, 52, 177–185 10.1227/00006123-200301000-00023Search in Google Scholar

[177] Martens T., Schmidt N.O., Eckerich C., Fillbrandt R., Merchant M., Schwall R., et al., A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo, Clin. Cancer Res., 2006, 12, 6144–6152 in Google Scholar PubMed

Published Online: 2013-9-13
Published in Print: 2013-9-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2023 from
Scroll Up Arrow