Abstract
Abnormal protein folding and self-assembly causes over 30 cureless human diseases for which no disease-modifying therapies are available. The common side to all these diseases is formation of aberrant toxic protein oligomers and amyloid fibrils. Both types of assemblies are drug targets, yet each presents major challenges to drug design, discovery, and development. In this review, we focus on two small molecules that inhibit formation of toxic amyloid protein assemblies — the green-tea derivative (−)-epigallocatechin-3-gallate (EGCG), which was identified through a combination of epidemiologic data and a compound library screen, and the molecular tweezer CLR01, whose inhibitory activity was discovered in our group based on rational reasoning, and subsequently confirmed experimentally. Both compounds act in a manner that is not specific to one particular protein and thus are useful against a multitude of amyloidogenic proteins, yet they act via distinct putative mechanisms. CLR01 disrupts protein aggregation through specific binding to lysine residues, whereas the mechanisms underlying the activity of EGCG are only recently beginning to unveil. We discuss current in vitro and, where available, in vivo literature related to EGCG and CLR01’s effects on amyloid β-protein, α-synuclein, transthyretin, islet amyloid polypeptide, and calcitonin. We also describe the toxicity, pharmacokinetics, and mechanism of action of each compound.
[1] Rahimi F., Shanmugam A., Bitan G., Structure-function relationships of pre-fibrillar protein assemblies in Alzheimer’s disease and related disorders, Curr. Alzheimer Res., 2008, 5, 319–341 10.2174/156720508784533358Search in Google Scholar
[2] Fändrich M., Oligomeric intermediates in amyloid formation: structure determination and mechanisms of toxicity, J. Mol. Biol., 2012, 421, 427–440 10.1016/j.jmb.2012.01.006Search in Google Scholar
[3] Serpell L.C., Alzheimer’s amyloid fibrils: structure and assembly, Biochim. Biophys. Acta, 2000, 1502, 16–30 10.1016/S0925-4439(00)00029-6Search in Google Scholar
[4] Vinters H.V., Tung S., Solis O.E., Pathologic Lesions in Alzheimer disease and Other Neurodegenerative Diseases—Cellular and Molecular Components, In: Rahimi F., Bitan G. (Eds.), Non-fibrillar Amyloidogenic Protein Assemblies—Common Cytotoxins Underlying Degenerative Diseases, Springer, 2012 10.1007/978-94-007-2774-8_2Search in Google Scholar
[5] Hardy J.A., Higgins G.A., Alzheimer’s disease: the amyloid cascade hypothesis, Science, 1992, 256, 184–185 10.1126/science.1566067Search in Google Scholar PubMed
[6] Soto C., Estrada L., Amyloid inhibitors and β-sheet breakers, Subcell. Biochem., 2005, 38, 351–364 10.1007/0-387-23226-5_18Search in Google Scholar PubMed
[7] Necula M., Kayed R., Milton S., Glabe C.G., Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinct, J. Biol. Chem., 2007, 282, 10311–10324 10.1074/jbc.M608207200Search in Google Scholar PubMed
[8] Ladiwala A.R., Dordick J.S., Tessier P.M., Aromatic small molecules remodel toxic soluble oligomers of amyloid β through three independent pathways, J. Biol. Chem., 2011, 286, 3209–3218 10.1074/jbc.M110.173856Search in Google Scholar PubMed PubMed Central
[9] Liu T., Bitan G., Modulating self-assembly of amyloidogenic proteins as a therapeutic approach for neurodegenerative diseases: strategies and mechanisms, ChemMedChem, 2012, 7, 359–374 10.1002/cmdc.201100585Search in Google Scholar PubMed
[10] Jan A., Adolfsson O., Allaman I., Buccarello A.L., Magistretti P.J., Pfeifer A., et al., Aβ42 neurotoxicity is mediated by ongoing nucleated polymerization process rather than by discrete Aβ42 species, J. Biol. Chem., 2011, 286, 8585–8596 10.1074/jbc.M110.172411Search in Google Scholar PubMed PubMed Central
[11] Eikelenboom P., Veerhuis R., Familian A., Hoozemans J.J., van Gool W.A., Rozemuller A.J., Neuroinflammation in plaque and vascular β-amyloid disorders: clinical and therapeutic implications, Neurodegener. Dis., 2008, 5, 190–193 10.1159/000113699Search in Google Scholar PubMed
[12] Esteras-Chopo A., Pastor M.T., Serrano L., Lopez de la Paz M., New strategy for the generation of specific D-peptide amyloid inhibitors, J. Mol. Biol., 2008, 377, 1372–1381 10.1016/j.jmb.2008.01.028Search in Google Scholar PubMed
[13] Fradinger E.A., Monien B.H., Urbanc B., Lomakin A., Tan M., Li H., et al., C-terminal peptides coassemble into Aβ42 oligomers and protect neurons against Aβ42-induced neurotoxicity, Proc. Natl. Acad. Sci. USA, 2008, 105, 14175–14180 10.1073/pnas.0807163105Search in Google Scholar PubMed PubMed Central
[14] Doig A.J., Peptide inhibitors of β-amyloid aggregation, Curr. Opin. Drug Discov. Devel., 2007, 10, 533–539 Search in Google Scholar
[15] Cheng P.N., Liu C., Zhao M., Eisenberg D., Nowick J.S., Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity, Nat. Chem., 2012, 4, 927–933 10.1038/nchem.1433Search in Google Scholar PubMed PubMed Central
[16] van Groen T., Wiesehan K., Funke S.A., Kadish I., Nagel-Steger L., Willbold D., Reduction of Alzheimer’s disease amyloid plaque load in transgenic mice by D3, A D-enantiomeric peptide identified by mirror image phage display, ChemMedChem, 2008, 3, 1848–1852 10.1002/cmdc.200800273Search in Google Scholar PubMed
[17] Belluti F., Rampa A., Gobbi S., Bisi A., Small-molecule inhibitors/modulators of amyloid-β peptide aggregation and toxicity for the treatment of Alzheimer’s disease—A patent review (2010–2012), Expert Opin. Ther. Pat., 2013 10.1517/13543776.2013.772983Search in Google Scholar PubMed
[18] Re F., Airoldi C., Zona C., Masserini M., La Ferla B., Quattrocchi N., et al., β amyloid aggregation inhibitors: small molecules as candidate drugs for therapy of Alzheimer’s disease, Curr. Med. Chem., 2010, 17, 2990–3006 10.2174/092986710791959729Search in Google Scholar PubMed
[19] Roberts B.E., Shorter J., Escaping amyloid fate, Nat. Struct. Mol. Biol., 2008, 15, 544–546 10.1038/nsmb0608-544Search in Google Scholar PubMed
[20] Wang W., Protein aggregation and its inhibition in biopharmaceutics, Int. J. Pharm., 2005, 289, 1–30 10.1016/j.ijpharm.2004.11.014Search in Google Scholar PubMed
[21] Bartolini M., Andrisano V., Strategies for the inhibition of protein aggregation in human diseases, ChemBioChem., 2010, 11, 1018–1035 10.1002/cbic.200900666Search in Google Scholar PubMed
[22] Bose M., Gestwicki J.E., Devasthali V., Crabtree G.R., Graef I.A., ‘Natureinspired’ drug-protein complexes as inhibitors of Aβ aggregation, Biochem. Soc. Trans., 2005, 33, 543–547 10.1042/BST0330543Search in Google Scholar PubMed
[23] Cole G.M., Teter B., Frautschy S.A., Neuroprotective effects of curcumin, Adv. Exp. Med. Biol., 2007, 595, 197–212 10.1007/978-0-387-46401-5_8Search in Google Scholar PubMed PubMed Central
[24] Bastianetto S., Krantic S., Quirion R., Polyphenols as potential inhibitors of amyloid aggregation and toxicity: possible significance to Alzheimer’s disease, Mini Rev. Med. Chem., 2008, 8, 429–435 10.2174/138955708784223512Search in Google Scholar PubMed
[25] Porat Y., Abramowitz A., Gazit E., Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism, Chem. Biol. Drug Des., 2006, 67, 27–37 10.1111/j.1747-0285.2005.00318.xSearch in Google Scholar PubMed
[26] Mandel S.A., Amit T., Weinreb O., Reznichenko L., Youdim M.B., Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases, CNS Neurosci. Ther., 2008, 14, 352–365 10.1111/j.1755-5949.2008.00060.xSearch in Google Scholar PubMed PubMed Central
[27] Albani D., Polito L., Signorini A., Forloni G., Neuroprotective properties of resveratrol in different neurodegenerative disorders, BioFactors, 2010, 36, 370–376 10.1002/biof.118Search in Google Scholar PubMed
[28] Cheng B., Liu X., Gong H., Huang L., Chen H., Zhang X., et al., Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: possible link between coffee consumption and diabetes mellitus, J. Agric. Food Chem., 2011, 59, 13147–13155 10.1021/jf201702hSearch in Google Scholar PubMed
[29] Huang Y., Jin M., Pi R., Zhang J., Chen M., Ouyang Y., et al., Protective effects of caffeic acid and caffeic acid phenethyl ester against acrolein-induced neurotoxicity in HT22 mouse hippocampal cells, Neurosci. Lett., 2013, 535, 146–151 10.1016/j.neulet.2012.12.051Search in Google Scholar PubMed
[30] Mohamed T., Yeung J.C., Vasefi M.S., Beazely M.A., Rao P.P., Development and evaluation of multifunctional agents for potential treatment of Alzheimer’s disease: application to a pyrimidine-2,4-diamine template, Bioorg. Med. Chem. Lett., 2012, 22, 4707–4712 10.1016/j.bmcl.2012.05.077Search in Google Scholar PubMed
[31] Mao F., Huang L., Luo Z., Liu A., Lu C., Xie Z., et al., O-Hydroxyl-or o-amino benzylamine-tacrine hybrids: multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation, Bioorg. Med. Chem., 2012, 20, 5884–5892 10.1016/j.bmc.2012.07.045Search in Google Scholar PubMed
[32] Pi R., Mao X., Chao X., Cheng Z., Liu M., Duan X., et al., Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-β-mediated Alzheimer’s disease-associated pathogenesis in vitro and in vivo, PLoS One, 2012, 7, e31921 10.1371/journal.pone.0031921Search in Google Scholar
[33] Bag S., Ghosh S., Tulsan R., Sood A., Zhou W., Schifone C., et al., Design, synthesis and biological activity of multifunctional α,β-unsaturated carbonyl scaffolds for Alzheimer’s disease, Bioorg. Med. Chem. Lett., 2013 10.1016/j.bmcl.2013.02.103Search in Google Scholar
[34] Nunes A., Marques S.M., Quintanova C., Silva D.F., Cardoso S.M., Chaves S., et al., Multifunctional iron-chelators with protective roles against neurodegenerative diseases, Dalton Trans., 2013 10.1039/c3dt50406aSearch in Google Scholar
[35] Telpoukhovskaia M.A., Patrick B.O., Rodriguez-Rodriguez C., Orvig C., Exploring the multifunctionality of thioflavin- and deferiprone-based molecules as acetylcholinesterase inhibitors for potential application in Alzheimer’s disease, Mol. Biosyst., 2013, 9, 792–805 10.1039/c3mb25600fSearch in Google Scholar
[36] Török B., Sood A., Bag S., Tulsan R., Ghosh S., Borkin D., et al., Diaryl hydrazones as multifunctional inhibitors of amyloid self-assembly, Biochemistry, 2013, 52, 1137–1148 10.1021/bi3012059Search in Google Scholar
[37] Granzotto A., Zatta P., Resveratrol acts not through anti-aggregative pathways but mainly via its scavenging properties against Aβ and Aβ-metal complexes toxicity, PLoS One, 2011, 6, e21565 10.1371/journal.pone.0021565Search in Google Scholar
[38] Stratton S.P., Bangert J.L., Alberts D.S., Dorr R.T., Dermal toxicity of topical (−)epigallocatechin-3-gallate in BALB/c and SKH1 mice, Cancer Lett., 2000, 158, 47–52 10.1016/S0304-3835(00)00498-5Search in Google Scholar
[39] Miyamoto Y., Haylor J.L., El Nahas A.M., Cellular toxicity of catechin analogues containing gallate in opossum kidney proximal tubular (OK) cells, J. Toxicol. Sci., 2004, 29, 47–52 10.2131/jts.29.47Search in Google Scholar PubMed
[40] Mak J.C., Potential role of green tea catechins in various disease therapies: progress and promise, Clin. Exp. Pharmacol. Physiol., 2012, 39, 265–273 10.1111/j.1440-1681.2012.05673.xSearch in Google Scholar PubMed
[41] Balentine D.A., Wiseman S.A., Bouwens L.C., The chemistry of tea flavonoids, Crit. Rev. Food Sci. Nutr., 1997, 37, 693–704 10.1080/10408399709527797Search in Google Scholar PubMed
[42] Khan N., Afaq F., Saleem M., Ahmad N., Mukhtar H., Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate, Cancer Res., 2006, 66, 2500–2505 10.1158/0008-5472.CAN-05-3636Search in Google Scholar PubMed
[43] Ehrnhoefer D.E., Duennwald M., Markovic P., Wacker J.L., Engemann S., Roark M., et al., Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models, Hum. Mol. Genet., 2006, 15, 2743–2751 10.1093/hmg/ddl210Search in Google Scholar PubMed
[44] Barranco Quintana J.L., Allam M.F., Del Castillo A.S., Navajas R.F., Parkinson’s disease and tea: a quantitative review, J. Am. Coll. Nutr., 2009, 28, 1–6 10.1080/07315724.2009.10719754Search in Google Scholar PubMed
[45] Hellenbrand W., Seidler A., Boeing H., Robra B.P., Vieregge P., Nischan P., et al., Diet and Parkinson’s disease. I: A possible role for the past intake of specific foods and food groups. Results from a selfadministered food-frequency questionnaire in a case-control study, Neurology, 1996, 47, 636–643 10.1212/WNL.47.3.636Search in Google Scholar PubMed
[46] Ng T.P., Feng L., Niti M., Kua E.H., Yap K.B., Tea consumption and cognitive impairment and decline in older Chinese adults, Am. J. Clin. Nutr., 2008, 88, 224–231 10.1093/ajcn/88.1.224Search in Google Scholar PubMed
[47] Dragicevic N., Smith A., Lin X., Yuan F., Copes N., Delic V., et al., Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer’s amyloid-induced mitochondrial dysfunction, J. Alzheimers Dis., 2011, 26, 507–521 10.3233/JAD-2011-101629Search in Google Scholar PubMed
[48] Fernandez J.W., Rezai-Zadeh K., Obregon D., Tan J., EGCG functions through estrogen receptor-mediated activation of ADAM10 in the promotion of non-amyloidogenic processing of APP, FEBS Lett., 2010, 584, 4259–4267 10.1016/j.febslet.2010.09.022Search in Google Scholar PubMed PubMed Central
[49] Lin C.L., Chen T.F., Chiu M.J., Way T.D., Lin J.K., Epigallocatechin gallate (EGCG) suppresses β-amyloid-induced neurotoxicity through inhibiting c-Abl/FE65 nuclear translocation and GSK3 β activation, Neurobiol. Aging, 2009, 30, 81–92 10.1016/j.neurobiolaging.2007.05.012Search in Google Scholar PubMed
[50] Mandel S.A., Amit T., Kalfon L., Reznichenko L., Weinreb O., Youdim M.B., Cell signaling pathways and iron chelation in the neurorestorative activity of green tea polyphenols: special reference to epigallocatechin gallate (EGCG), J. Alzheimers Dis., 2008, 15, 211–222 10.3233/JAD-2008-15207Search in Google Scholar
[51] Singh B.N., Shankar S., Srivastava R.K., Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications, Biochem. Pharmacol., 2011, 82, 1807–1821 10.1016/j.bcp.2011.07.093Search in Google Scholar PubMed PubMed Central
[52] Smith A., Giunta B., Bickford P.C., Fountain M., Tan J., Shytle R.D., Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease, Int. J. Pharm., 2010, 389, 207–212 10.1016/j.ijpharm.2010.01.012Search in Google Scholar
[53] Ruidavets J., Teissedre P., Ferrieres J., Carando S., Bougard G., Cabanis J., Catechin in the Mediterranean diet: vegetable, fruit or wine?, Atherosclerosis, 2000, 153, 107–117 10.1016/S0021-9150(00)00377-4Search in Google Scholar
[54] Chyu K.Y., Babbidge S.M., Zhao X., Dandillaya R., Rietveld A.G., Yano J., et al., Differential effects of green tea-derived catechin on developing versus established atherosclerosis in apolipoprotein E-null mice, Circulation, 2004, 109, 2448–2453 10.1161/01.CIR.0000128034.70732.C2Search in Google Scholar PubMed
[55] Katiyar S., Elmets C.A., Katiyar S.K., Green tea and skin cancer: photoimmunology, angiogenesis and DNA repair, J. Nutr. Biochem., 2007, 18, 287–296 10.1016/j.jnutbio.2006.08.004Search in Google Scholar PubMed
[56] Meng F., Abedini A., Plesner A., Verchere C.B., Raleigh D.P., The flavanol (−)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against IAPP-induced toxicity, Biochemistry, 2010, 49, 8127–8133 10.1021/bi100939aSearch in Google Scholar PubMed PubMed Central
[57] Ehrnhoefer D.E., Bieschke J., Boeddrich A., Herbst M., Masino L., Lurz R., et al., EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers, Nat. Struct. Mol. Biol., 2008, 15, 558–566 10.1038/nsmb.1437Search in Google Scholar PubMed
[58] Bieschke J., Russ J., Friedrich R.P., Ehrnhoefer D.E., Wobst H., Neugebauer K., et al., EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity, Proc. Natl. Acad. Sci. USA, 2010, 107, 7710–7715 10.1073/pnas.0910723107Search in Google Scholar PubMed PubMed Central
[59] Masuda M., Suzuki N., Taniguchi S., Oikawa T., Nonaka T., Iwatsubo T., et al., Small molecule inhibitors of α-synuclein filament assembly, Biochemistry, 2006, 45, 6085–6094 10.1021/bi0600749Search in Google Scholar PubMed
[60] Hauber I., Hohenberg H., Holstermann B., Hunstein W., Hauber J., The main green tea polyphenol epigallocatechin-3-gallate counteracts semen-mediated enhancement of HIV infection, Proc. Natl. Acad. Sci. USA, 2009, 106, 9033–9038 10.1073/pnas.0811827106Search in Google Scholar PubMed PubMed Central
[61] Popovych N., Brender J.R., Soong R., Vivekanandan S., Hartman K., Basrur V., et al., Site specific interaction of the polyphenol EGCG with the SEVI amyloid precursor peptide PAP(248–286), J. Phys. Chem. B, 2012, 116, 3650–3658 10.1021/jp2121577Search in Google Scholar PubMed PubMed Central
[62] Chandrashekaran I.R., Adda C.G., MacRaild C.A., Anders R.F., Norton R.S., Inhibition by flavonoids of amyloid-like fibril formation by Plasmodium falciparum merozoite surface protein 2, Biochemistry, 2010, 49, 5899–5908 10.1021/bi902197xSearch in Google Scholar PubMed
[63] Chandrashekaran I.R., Adda C.G., Macraild C.A., Anders R.F., Norton R.S., EGCG disaggregates amyloid-like fibrils formed by Plasmodium falciparum merozoite surface protein 2, Arch. Biochem. Biophys., 2011, 513, 153–157 10.1016/j.abb.2011.07.008Search in Google Scholar PubMed PubMed Central
[64] Rambold A.S., Miesbauer M., Olschewski D., Seidel R., Riemer C., Smale L., et al., Green tea extracts interfere with the stress-protective activity of PrP and the formation of PrP, J. Neurochem., 2008, 107, 218–229 10.1111/j.1471-4159.2008.05611.xSearch in Google Scholar PubMed
[65] Attar A., Bitan G., Disrupting Self-Assembly and Toxicity of Amyloidogenic Protein Oligomers by “Molecular Tweezers”-from the Test Tube to Animal Models, Curr. Pharm. Des., 2013, In press Search in Google Scholar
[66] Klärner F.G., Schrader T., Aromatic interactions by molecular tweezers and clips in chemical and biological systems, Acc. Chem. Res., 2013, 46, 967–978 10.1021/ar300061cSearch in Google Scholar PubMed
[67] Fokkens M., Schrader T., Klärner F.G., A molecular tweezer for lysine and arginine, J. Am. Chem. Soc., 2005, 127, 14415–14421 10.1021/ja052806aSearch in Google Scholar PubMed
[68] Talbiersky P., Bastkowski F., Klärner F.G., Schrader T., Molecular clip and tweezer introduce new mechanisms of enzyme inhibition, J. Am. Chem. Soc., 2008, 130, 9824–9828 10.1021/ja801441jSearch in Google Scholar PubMed
[69] Sinha S., Lopes D.H., Du Z., Pang E.S., Shanmugam A., Lomakin A., et al., Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins, J. Am. Chem. Soc., 2011, 133, 16958–16969 10.1021/ja206279bSearch in Google Scholar PubMed PubMed Central
[70] Bier D., Rose R., Bravo-Rodriguez K., Bartel M., Ramirez-Anguita J.M., Dutt S., et al., Molecular tweezers modulate 14-3-3 protein-protein interactions, Nat. Chem., 2013, 5, 234–239 10.1038/nchem.1570Search in Google Scholar PubMed
[71] Attar A., Ripoli C., Riccardi E., Maiti P., Li Puma D.D., Liu T., et al., Protection of primary neurons and mouse brain from Alzheimer’s pathology by molecular tweezers, Brain, 2012, 135, 3735–3748 10.1093/brain/aws289Search in Google Scholar PubMed PubMed Central
[72] Prabhudesai S., Sinha S., Attar A., Kotagiri A., Fitzmaurice A.G., Lakshmanan R., et al., A novel “molecular tweezer” inhibitor of α-synuclein neurotoxicity in vitro and in vivo, Neurotherapeutics, 2012, 9, 464–476 10.1007/s13311-012-0105-1Search in Google Scholar PubMed PubMed Central
[73] Glenner G.G., Wong C.W., Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein, Biochem. Biophys. Res. Commun., 1984, 120, 885–890 10.1016/S0006-291X(84)80190-4Search in Google Scholar
[74] Masters C.L., Simms G., Weinman N.A., Multhaup G., McDonald B.L., Beyreuther K., Amyloid plaque core protein in Alzheimer disease and Down syndrome, Proc. Natl. Acad. Sci. U.S.A., 1985, 82, 4245–4249 10.1073/pnas.82.12.4245Search in Google Scholar
[75] Hardy J., Selkoe D.J., The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics, Science, 2002, 297, 353–356. 10.1126/science.1072994Search in Google Scholar
[76] Bastianetto S., Yao Z.X., Papadopoulos V., Quirion R., Neuroprotective effects of green and black teas and their catechin gallate esters against β-amyloid-induced toxicity, Eur. J. Neurosci., 2006, 23, 55–64 10.1111/j.1460-9568.2005.04532.xSearch in Google Scholar
[77] LeVine H., 3rd, Quantification of β-sheet amyloid fibril structures with thioflavin T., Methods Enzymol., 1999, 309, 274–284 10.1016/S0076-6879(99)09020-5Search in Google Scholar
[78] Palhano F.L., Lee J., Grimster N.P., Kelly J.W., Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils, J. Am. Chem. Soc., 2013, 135, 7503–7510 10.1021/ja3115696Search in Google Scholar PubMed PubMed Central
[79] Walsh D.M., Klyubin I., Fadeeva J.V., Cullen W.K., Anwyl R., Wolfe M.S., et al., Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo, Nature, 2002, 416, 535–539 10.1038/416535aSearch in Google Scholar PubMed
[80] Reed M.N., Hofmeister J.J., Jungbauer L., Welzel A.T., Yu C., Sherman M.A., et al., Cognitive effects of cell-derived and synthetically derived Aβ oligomers, Neurobiol. Aging, 2011, 32, 1784–1794 10.1016/j.neurobiolaging.2009.11.007Search in Google Scholar PubMed PubMed Central
[81] O’Nuallain B., Freir D.B., Nicoll A.J., Risse E., Ferguson N., Herron C.E., et al., Amyloid β-protein dimers rapidly form stable synaptotoxic protofibrils, J. Neurosci., 2010, 30, 14411–14419 10.1523/JNEUROSCI.3537-10.2010Search in Google Scholar PubMed PubMed Central
[82] Kayed R., Head E., Thompson J.L., McIntire T.M., Milton S.C., Cotman C.W., et al., Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis, Science, 2003, 300, 486–489 10.1126/science.1079469Search in Google Scholar PubMed
[83] Paz M.A., Flückiger R., Boak A., Kagan H.M., Gallop P.M., Specific detection of quinoproteins by redox-cycling staining, J. Biol. Chem., 1991, 266, 689–692 10.1016/S0021-9258(17)35225-0Search in Google Scholar
[84] Lopez del Amo J.M., Fink U., Dasari M., Grelle G., Wanker E.E., Bieschke J., et al., Structural properties of EGCG-induced, nontoxic Alzheimer’s disease Aβ oligomers, J. Mol. Biol., 2012, 421, 517–524 10.1016/j.jmb.2012.01.013Search in Google Scholar PubMed
[85] Bitan G., Kirkitadze M.D., Lomakin A., Vollers S.S., Benedek G.B., Teplow D.B., Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways, Proc. Natl. Acad. Sci. USA, 2003, 100, 330–335 10.1073/pnas.222681699Search in Google Scholar PubMed PubMed Central
[86] Hoshi M., Sato M., Matsumoto S., Noguchi A., Yasutake K., Yoshida N., et al., Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β, Proc. Natl. Acad. Sci. USA, 2003, 100, 6370–6375 10.1073/pnas.1237107100Search in Google Scholar PubMed PubMed Central
[87] Dahlgren K.N., Manelli A.M., Stine W.B., Jr., Baker L.K., Krafft G.A., LaDu M.J., Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability, J. Biol. Chem., 2002, 277, 32046–32053 10.1074/jbc.M201750200Search in Google Scholar PubMed
[88] Harper J.D., Lansbury P.T., Jr., Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins, Annu. Rev. Biochem, 1997, 66, 385–407 10.1146/annurev.biochem.66.1.385Search in Google Scholar PubMed
[89] Petkova A.T., Ishii Y., Balbach J.J., Antzutkin O.N., Leapman R.D., Delaglio F., et al., A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR, Proc. Natl. Acad. Sci. USA, 2002, 99, 16742–16747 10.1073/pnas.262663499Search in Google Scholar PubMed PubMed Central
[90] Petkova A.T., Yau W.M., Tycko R., Experimental constraints on quaternary structure in Alzheimer’s β-amyloid fibrils, Biochemistry, 2006, 45, 498–512 10.1021/bi051952qSearch in Google Scholar PubMed PubMed Central
[91] Lazo N.D., Grant M.A., Condron M.C., Rigby A.C., Teplow D.B., On the nucleation of amyloid β-protein monomer folding, Protein Sci., 2005, 14, 1581–1596 10.1110/ps.041292205Search in Google Scholar PubMed PubMed Central
[92] Yu L., Edalji R., Harlan J.E., Holzman T.F., Lopez A.P., Labkovsky B., et al., Structural characterization of a soluble amyloid β-peptide oligomer, Biochemistry, 2009, 48, 1870–1877 10.1021/bi802046nSearch in Google Scholar PubMed
[93] Wang S.H., Liu F.F., Dong X.Y., Sun Y., Thermodynamic analysis of the molecular interactions between amyloid β-peptide 42 and (−)-epigallocatechin-3-gallate, J. Phys. Chem. B, 2010, 114, 11576–11583 10.1021/jp1001435Search in Google Scholar PubMed
[94] Wang S.H., Dong X.Y., Sun Y., Thermodynamic analysis of the molecular interactions between amyloid β-protein fragments and (−)-epigallocatechin-3-gallate, J. Phys. Chem. B, 2012, 116, 5803–5809 10.1021/jp209406tSearch in Google Scholar PubMed
[95] Hane F., Tran G., Attwood S.J., Leonenko Z., Cu2+ affects amyloid-β (1–42) aggregation by increasing peptide-peptide binding forces, PLoS One, 2013, 8, e59005 10.1371/journal.pone.0059005Search in Google Scholar PubMed PubMed Central
[96] Solomonov I., Korkotian E., Born B., Feldman Y., Bitler A., Rahimi F., et al., Zn2+-Aβ40 complexes form metastable quasi-spherical oligomers that are cytotoxic to cultured hippocampal neurons, J. Biol. Chem., 2012, 287, 20555–20564 10.1074/jbc.M112.344036Search in Google Scholar PubMed PubMed Central
[97] Mancino A.M., Hindo S.S., Kochi A., Lim M.H., Effects of clioquinol on metal-triggered amyloid-β aggregation revisited, Inorg. Chem., 2009, 48, 9596–9598 10.1021/ic9014256Search in Google Scholar PubMed
[98] Bush A.I., Masters C.L., Tanzi R.E., Copper, β-amyloid, and Alzheimer’s disease: Tapping a sensitive connection, Proc. Natl. Acad. Sci. USA, 2003, 100, 11193–11194 10.1073/pnas.2135061100Search in Google Scholar PubMed PubMed Central
[99] Huang X., Moir R.D., Tanzi R.E., Bush A.I., Rogers J.T., Redox-active metals, oxidative stress, and Alzheimer’s disease pathology, Ann. N. Y. Acad. Sci., 2004, 1012, 153–163 10.1196/annals.1306.012Search in Google Scholar PubMed
[100] Pirker K.F., Baratto M.C., Basosi R., Goodman B.A., Influence of pH on the speciation of copper(II) in reactions with the green tea polyphenols, epigallocatechin gallate and gallic acid, J. Inorg. Biochem., 2012, 112, 10–16 10.1016/j.jinorgbio.2011.12.010Search in Google Scholar PubMed PubMed Central
[101] Sun S.L., He G.Q., Yu H.N., Yang J.G., Borthakur D., Zhang L.C., et al., Free Zn2+ enhances inhibitory effects of EGCG on the growth of PC-3 cells, Mol. Nutr. Food Res., 2008, 52, 465–471 10.1002/mnfr.200700172Search in Google Scholar PubMed
[102] Weinreb O., Amit T., Mandel S., Youdim M.B., Neuroprotective molecular mechanisms of (−)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties, Genes Nutr. 2009, 4, 283–296 10.1007/s12263-009-0143-4Search in Google Scholar PubMed PubMed Central
[103] Seeram N.P., Henning S.M., Niu Y., Lee R., Scheuller H.S., Heber D., Catechin and caffeine content of green tea dietary supplements and correlation with antioxidant capacity, J. Agric. Food Chem., 2006, 54, 1599–1603 10.1021/jf052857rSearch in Google Scholar PubMed
[104] Zhang Y., Jiang T., Zheng Y., Zhou P., Interference of EGCG on the Zn(II)-induced conformational transition of silk fibroin as a model protein related to neurodegenerative diseases, Soft Matter, 2012, 8, 5543–5549 10.1039/c2sm25099cSearch in Google Scholar
[105] Cheng X.R., Hau B.Y., Veloso A.J., Martic S., Kraatz H.B., Kerman K., Surface plasmon resonance imaging of amyloid-β aggregation kinetics in the presence of epigallocatechin gallate and metals, Anal. Chem., 2013, 85, 2049–2055 10.1021/ac303181qSearch in Google Scholar PubMed
[106] Hyung S.J., DeToma A.S., Brender J.R., Lee S., Vivekanandan S., Kochi A., et al., Insights into antiamyloidogenic properties of the green tea extract (−)-epigallocatechin-3-gallate toward metal-associated amyloid-β species, Proc. Natl. Acad. Sci. USA, 2013, 110, 3743–3748 10.1073/pnas.1220326110Search in Google Scholar PubMed PubMed Central
[107] Sinha S., Du Z., Maiti P., Klärner F.G., Schrader T., Wang C., et al., Comparison of three amyloid assembly inhibitors: the sugar scylloinositol, the polyphenol epigallocatechin gallate, and the molecular tweezer CLR01, ACS Chem. Neurosci., 2012, 3, 451–458 10.1021/cn200133xSearch in Google Scholar PubMed PubMed Central
[108] Miyai S., Yamaguchi A., Iwasaki T., Shamsa F., Ohtsuki K., Biochemical characterization of epigallocatechin-3-gallate as an effective stimulator for the phosphorylation of its binding proteins by glycogen synthase kinase-3β in vitro, Biol. Pharm. Bull., 2010, 33, 1932–1937 10.1248/bpb.33.1932Search in Google Scholar PubMed
[109] Takashima A., The Mechanism of tau aggregation and its relation to neuronal dysfunction, Alzheimer’s Association Interantional Conference on Alzheimer’s disease, 2010, S144, Abstract No. PL-104-103. Search in Google Scholar
[110] Frost B., Ollesch J., Wille H., Diamond M.I., Conformational diversity of wild-type Tau fibrils specified by templated conformation change, J. Biol. Chem., 2009, 284, 3546–3551 10.1074/jbc.M805627200Search in Google Scholar PubMed PubMed Central
[111] Hsiao K., Chapman P., Nilsen S., Eckman C., Harigaya Y., Younkin S., et al., Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice, Science, 1996, 274, 99–102 10.1126/science.274.5284.99Search in Google Scholar PubMed
[112] Rezai-Zadeh K., Shytle D., Sun N., Mori T., Hou H., Jeanniton D., et al., Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice, J. Neurosci., 2005, 25, 8807–8814 10.1523/JNEUROSCI.1521-05.2005Search in Google Scholar PubMed PubMed Central
[113] Rezai-Zadeh K., Arendash G.W., Hou H., Fernandez F., Jensen M., Runfeldt M., et al., Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice, Brain Res., 2008, 1214, 177–187 10.1016/j.brainres.2008.02.107Search in Google Scholar PubMed
[114] Hwang D.Y., Chae K.R., Kang T.S., Hwang J.H., Lim C.H., Kang H.K., et al., Alterations in behavior, amyloid β-42, caspase-3, and Cox-2 in mutant PS2 transgenic mouse model of Alzheimer’s disease, FASEB J., 2002, 16, 805–813 10.1096/fj.01-0732comSearch in Google Scholar PubMed
[115] Lee J.W., Lee Y.K., Ban J.O., Ha T.Y., Yun Y.P., Han S.B., et al., Green tea (−)-epigallocatechin-3-gallate inhibits β-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-κB pathways in mice, J. Nutr., 2009, 139, 1987–1993 10.3945/jn.109.109785Search in Google Scholar PubMed
[116] Lee S.Y., Lee J.W., Lee H., Yoo H.S., Yun Y.P., Oh K.W., et al., Inhibitory effect of green tea extract on β-amyloid-induced PC12 cell death by inhibition of the activation of NF-κB and ERK/p38 MAP kinase pathway through antioxidant mechanisms, Brain Res. Mol. Brain Res., 2005, 140, 45–54 10.1016/j.molbrainres.2005.07.009Search in Google Scholar PubMed
[117] Rasoolijazi H., Joghataie M.T., Roghani M., Nobakht M., The beneficial effect of (−)-epigallocatechin-3-gallate in an experimental model of Alzheimer’s disease in rat: a behavioral analysis, Iran Biomed. J., 2007, 11, 237–243 Search in Google Scholar
[118] Lee Y.K., Yuk D.Y., Lee J.W., Lee S.Y., Ha T.Y., Oh K.W., et al., (−)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of β-amyloid generation and memory deficiency, Brain Res., 2009, 1250, 164–174 10.1016/j.brainres.2008.10.012Search in Google Scholar PubMed
[119] Lee Y.J., Choi D.Y., Yun Y.P., Han S.B., Oh K.W., Hong J.T., Epigallocatechin-3-gallate prevents systemic inflammationinduced memory deficiency and amyloidogenesis via its antineuroinflammatory properties, J. Nutr. Biochem., 2013, 24, 298–310 10.1016/j.jnutbio.2012.06.011Search in Google Scholar PubMed
[120] Miklossy J., Kis A., Radenovic A., Miller L., Forro L., Martins R., et al., β-amyloid deposition and Alzheimer’s type changes induced by Borrelia spirochetes, Neurobiol. Aging, 2006, 27, 228–236 10.1016/j.neurobiolaging.2005.01.018Search in Google Scholar PubMed
[121] Link C.D., Expression of human β-amyloid peptide in transgenic Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA, 1995, 92, 9368–9372 10.1073/pnas.92.20.9368Search in Google Scholar PubMed PubMed Central
[122] Abbas S., Wink M., Epigallocatechin gallate inhibits β amyloid oligomerization in Caenorhabditis elegans and affects the daf-2/ insulin-like signaling pathway, Phytomedicine, 2010, 17, 902–909 10.1016/j.phymed.2010.03.008Search in Google Scholar PubMed
[123] Bitan G., Fradinger E.A., Spring S.M., Teplow D.B., Neurotoxic protein oligomers—what you see is not always what you get, Amyloid, 2005, 12, 88–95 10.1080/13506120500106958Search in Google Scholar PubMed
[124] Hepler R.W., Grimm K.M., Nahas D.D., Breese R., Dodson E.C., Acton P., et al., Solution state characterization of amyloid β-derived diffusible ligands, Biochemistry, 2006, 45, 15157–15167 10.1021/bi061850fSearch in Google Scholar PubMed
[125] Khan J.M., Qadeer A., Chaturvedi S.K., Ahmad E., Rehman S.A., Gourinath S., et al., SDS can be utilized as an amyloid inducer: a case study on diverse proteins, PLoS One, 2012, 7, e29694 10.1371/journal.pone.0029694Search in Google Scholar
[126] Watt A.D., Perez K.A., Rembach A., Sherrat N.A., Hung L.W., Johanssen T., et al., Oligomers, fact or artefact? SDS-PAGE induces dimerization of β-amyloid in human brain samples, Acta Neuropathol. (Berl). 2013 10.1007/s00401-013-1083-zSearch in Google Scholar
[127] Jankowsky J.L., Fadale D.J., Anderson J., Xu G.M., Gonzales V., Jenkins N.A., et al., Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase, Hum. Mol. Genet., 2004, 13, 159–170 10.1093/hmg/ddh019Search in Google Scholar
[128] Oddo S., Caccamo A., Shepherd J.D., Murphy M.P., Golde T.E., Kayed R., et al., Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction, Neuron, 2003, 39, 409–421 10.1016/S0896-6273(03)00434-3Search in Google Scholar
[129] George J.M., Jin H., Woods W.S., Clayton D.F., Characterization of a novel protein regulated during the critical period for song learning in the zebra finch, Neuron, 1995, 15, 361–372 10.1016/0896-6273(95)90040-3Search in Google Scholar
[130] Maroteaux L., Scheller R.H., The rat brain synucleins; family of proteins transiently associated with neuronal membrane, Brain Res. Mol. Brain Res., 1991, 11, 335–343 10.1016/0169-328X(91)90043-WSearch in Google Scholar
[131] Maroteaux L., Campanelli J.T., Scheller R.H., Synuclein: a neuronspecific protein localized to the nucleus and presynaptic nerve terminal, J. Neurosci., 1988, 8, 2804–2815 10.1523/JNEUROSCI.08-08-02804.1988Search in Google Scholar
[132] Bendor J.T., Logan T.P., Edwards R.H., The function of α-synuclein, Neuron, 2013, 79, 1044–1066 10.1016/j.neuron.2013.09.004Search in Google Scholar
[133] El-Agnaf O.M.A., Jakes R., Curran M.D., Middleton D., Ingenito R., Bianchi E., et al., Aggregates from mutant and wild-type α-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of β-sheet and amyloid-like filaments, FEBS Lett., 1998, 440, 71–75 10.1016/S0014-5793(98)01418-5Search in Google Scholar
[134] Acharya S., Safaie B., Wongkongkathep P., Ivanova M.I., Attar A., Klärner F.-G., et al., Molecular basis for preventing α-synuclein aggregation by a molecular tweezer, 2013, Submitted for publication 10.1074/jbc.M113.524520Search in Google Scholar PubMed PubMed Central
[135] Ng C.H., Mok S.Z., Koh C., Ouyang X., Fivaz M.L., Tan E.K., et al., Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila, J. Neurosci., 2009, 29, 11257–11262 10.1523/JNEUROSCI.2375-09.2009Search in Google Scholar
[136] Wang C., Lu R., Ouyang X., Ho M.W., Chia W., Yu F., et al., Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities, J. Neurosci., 2007, 27, 8563–8570 10.1523/JNEUROSCI.0218-07.2007Search in Google Scholar
[137] Ng C.H., Guan M.S., Koh C., Ouyang X., Yu F., Tan E.K., et al., AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson’s disease, J. Neurosci., 2012, 32, 14311–14317 10.1523/JNEUROSCI.0499-12.2012Search in Google Scholar
[138] Bonilla-Ramirez L., Jimenez-Del-Rio M., Velez-Pardo C., Low doses of paraquat and polyphenols prolong life span and locomotor activity in knock-down parkin Drosophila melanogaster exposed to oxidative stress stimuli: implication in autosomal recessive juvenile Parkinsonism, Gene, 2013, 512, 355–363 10.1016/j.gene.2012.09.120Search in Google Scholar
[139] Choi J.Y., Park C.S., Kim D.J., Cho M.H., Jin B.K., Pie J.E., et al., Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridineinduced Parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate, Neurotoxicology, 2002, 23, 367–374 10.1016/S0161-813X(02)00079-7Search in Google Scholar
[140] Kim J.S., Kim J.M., O J.J., Jeon B.S., Inhibition of inducible nitric oxide synthase expression and cell death by (−)-epigallocatechin-3-gallate, a green tea catechin, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease, J. Clin. Neurosci., 2010, 17, 1165–1168 10.1016/j.jocn.2010.01.042Search in Google Scholar PubMed
[141] Reznichenko L., Kalfon L., Amit T., Youdim M.B., Mandel S.A., Low dosage of rasagiline and epigallocatechin gallate synergistically restored the nigrostriatal axis in MPTP-induced parkinsonism, Neurodegener. Dis., 2010, 7, 219–231 10.1159/000265946Search in Google Scholar PubMed
[142] Youdim M.B., Grunblatt E., Levites Y., Maor G., Mandel S., Early and late molecular events in neurodegeneration and neuroprotection in Parkinson’s disease MPTP model as assessed by cDNA microarray; the role of iron, Neurotox. Res., 2002, 4, 679–689 10.1080/1029842021000045507Search in Google Scholar PubMed
[143] Leaver K.R., Allbutt H.N., Creber N.J., Kassiou M., Henderson J.M., Oral pre-treatment with epigallocatechin gallate in 6-OHDA lesioned rats produces subtle symptomatic relief but not neuroprotection, Brain Res. Bull., 2009, 80, 397–402 10.1016/j.brainresbull.2009.08.013Search in Google Scholar PubMed
[144] Kang K.S., Wen Y., Yamabe N., Fukui M., Bishop S.C., Zhu B.T., Dual beneficial effects of (−)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: in vitro and in vivo studies, PLoS One, 2010, 5, e11951 10.1371/journal.pone.0011951Search in Google Scholar PubMed PubMed Central
[145] Emmanouilidou E., Stefanis L., Vekrellis K., Cell-produced α-synuclein oligomers are targeted to, and impair, the 26S proteasome, Neurobiol. Aging, 2010, 31, 953–968 10.1016/j.neurobiolaging.2008.07.008Search in Google Scholar PubMed
[146] Zhang N.Y., Tang Z., Liu C.W., α-Synuclein protofibrils inhibit 26 S proteasome-mediated protein degradation: understanding the cytotoxicity of protein protofibrils in neurodegenerative disease pathogenesis, J. Biol. Chem., 2008, 283, 20288–20298 10.1074/jbc.M710560200Search in Google Scholar PubMed
[147] Lulla A., Barnhill L., Stahl M., Fitzmaurice A.G., Li S., Bronstein J.M., Neurotoxicity of the dithiocarbamate fungicide ziram is dependent on synuclein in zebrafish: Implications for Parkinson’s disease, Society of Toxicology Annual Meeting, 2013, Abstract #1407. Search in Google Scholar
[148] Wang X.F., Li S., Chou A.P., Bronstein J.M., Inhibitory effects of pesticides on proteasome activity: implication in Parkinson’s disease, Neurobiol. Dis., 2006, 23, 198–205 10.1016/j.nbd.2006.02.012Search in Google Scholar PubMed
[149] Zhou Y., Shie F.S., Piccardo P., Montine T.J., Zhang J., Proteasomal inhibition induced by manganese ethylene-bis-dithiocarbamate: relevance to Parkinson’s disease, Neuroscience, 2004, 128, 281–291 10.1016/j.neuroscience.2004.06.048Search in Google Scholar PubMed
[150] Chou A.P., Maidment N., Klintenberg R., Casida J.E., Li S., Fitzmaurice A.G., et al., Ziram causes dopaminergic cell damage by inhibiting E1 ligase of the proteasome, J. Biol. Chem., 2008, 283, 34696–34703 10.1074/jbc.M802210200Search in Google Scholar PubMed PubMed Central
[151] Wang A., Costello S., Cockburn M., Zhang X., Bronstein J., Ritz B., Parkinson’s disease risk from ambient exposure to pesticides, Eur. J. Epidemiol., 2011, 26, 547–555 10.1007/s10654-011-9574-5Search in Google Scholar PubMed PubMed Central
[152] Rinetti G.V., Schweizer F.E., Ubiquitination acutely regulates presynaptic neurotransmitter release in mammalian neurons, J. Neurosci., 2010, 30, 3157–3166 10.1523/JNEUROSCI.3712-09.2010Search in Google Scholar PubMed PubMed Central
[153] Saraiva M., Cardoso I., Transthyretin Aggregation and Toxicity, In: Rahimi F., Bitan G. (Eds.), Non-fibrillar Amyloidogenic Protein Assemblies—Common Cytotoxins Underlying Degenerative Diseases, Springer Netherlands, 2012 10.1007/978-94-007-2774-8_13Search in Google Scholar
[154] Westermark P., Senile systemic amyloidosis — An overview, Amyloid, 2001, 8, 121 Search in Google Scholar
[155] Ferreira N., Cardoso I., Domingues M.R., Vitorino R., Bastos M., Bai G., et al., Binding of epigallocatechin-3-gallate to transthyretin modulates its amyloidogenicity, FEBS Lett., 2009, 583, 3569–3576 10.1016/j.febslet.2009.10.062Search in Google Scholar PubMed
[156] Miyata M., Sato T., Kugimiya M., Sho M., Nakamura T., Ikemizu S., et al., The crystal structure of the green tea polyphenol (−)-epigallocatechin gallate-transthyretin complex reveals a novel binding site distinct from the thyroxine binding site, Biochemistry, 2010, 49, 6104–6114 10.1021/bi1004409Search in Google Scholar PubMed
[157] Kristen A.V., Lehrke S., Buss S., Mereles D., Steen H., Ehlermann P., et al., Green tea halts progression of cardiac transthyretin amyloidosis: an observational report, Clin. Res. Cardiol., 2012, 101, 805–813 10.1007/s00392-012-0463-zSearch in Google Scholar
[158] Kristen A.V., Perz J.B., Schonland S.O., Hegenbart U., Schnabel P.A., Kristen J.H., et al., Non-invasive predictors of survival in cardiac amyloidosis, Eur. J. Heart Fail., 2007, 9, 617–624 10.1016/j.ejheart.2007.01.012Search in Google Scholar
[159] Mörner S., Hellman U., Suhr O.B., Kazzam E., Waldenstrom A., Amyloid heart disease mimicking hypertrophic cardiomyopathy, J. Intern. Med., 2005, 258, 225–230 10.1111/j.1365-2796.2005.01522.xSearch in Google Scholar
[160] Ferreira N., Saraiva M.J., Almeida M.R., Epigallocatechin-3-gallate as a potential therapeutic drug for TTR-related amyloidosis: “in vivo” evidence from FAP mice models, PLoS One, 2012, 7, e29933 10.1371/journal.pone.0029933Search in Google Scholar
[161] Santos S.D., Fernandes R., Saraiva M.J., The heat shock response modulates transthyretin deposition in the peripheral and autonomic nervous systems, Neurobiol. Aging, 2010, 31, 280–289 10.1016/j.neurobiolaging.2008.04.001Search in Google Scholar
[162] Ferreira N., Pereira-Henriques A., Attar A., Klärner F.-G., Schrader T., Bitan G., et al., Molecular Tweezers Targeting Transthyretin Amyloidosis, 2013, Submitted for publication 10.1007/s13311-013-0256-8Search in Google Scholar
[163] Westermark P., Wernstedt C., Wilander E., Hayden D.W., O’Brien T.D., Johnson K.H., Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells, Proc. Natl. Acad. Sci. USA, 1987, 84, 3881–3885 10.1073/pnas.84.11.3881Search in Google Scholar
[164] Cooper G.J., Willis A.C., Clark A., Turner R.C., Sim R.B., Reid K.B., Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients, Proc. Natl. Acad. Sci. USA, 1987, 84, 8628–8632 10.1073/pnas.84.23.8628Search in Google Scholar
[165] Kahn S.E., Andrikopoulos S., Verchere C.B., Islet amyloid: a longrecognized but underappreciated pathological feature of type 2 diabetes, Diabetes, 1999, 48, 241–253 10.2337/diabetes.48.2.241Search in Google Scholar
[166] Clark A., Cooper G.J., Lewis C.E., Morris J.F., Willis A.C., Reid K.B., et al., Islet amyloid formed from diabetes-associated peptide may be pathogenic in type-2 diabetes, Lancet, 1987, 2, 231–234 10.1016/S0140-6736(87)90825-7Search in Google Scholar
[167] Hull R.L., Westermark G.T., Westermark P., Kahn S.E., Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes, J. Clin. Endocrinol. Metab., 2004, 89, 3629–3643 10.1210/jc.2004-0405Search in Google Scholar PubMed
[168] Lorenzo A., Razzaboni B., Weir G.C., Yankner B.A., Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus, Nature, 1994, 368, 756–760 10.1038/368756a0Search in Google Scholar PubMed
[169] Clark A., Wells C.A., Buley I.D., Cruickshank J.K., Vanhegan R.I., Matthews D.R., et al., Islet amyloid, increased a-cells, reduced b-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes, Diabetes Res., 1988, 9, 151–159 Search in Google Scholar
[170] Butler A.E., Janson J., Bonner-Weir S., Ritzel R., Rizza R.A., Butler P.C., β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes, Diabetes, 2003, 52, 102–110 10.2337/diabetes.52.1.102Search in Google Scholar PubMed
[171] Bahramikia S., Yazdanparast R., Inhibition of human islet amyloid polypeptide or amylin aggregation by two manganese-salen derivatives, Eur. J. Pharmacol., 2013, 707, 17–25 10.1016/j.ejphar.2013.03.017Search in Google Scholar PubMed
[172] Cheng B., Gong H., Li X., Sun Y., Chen H., Zhang X., et al., Salvianolic acid B inhibits the amyloid formation of human islet amyloid polypeptideand protects pancreatic β-cells against cytotoxicity, Proteins, 2013, 81, 613–621 10.1002/prot.24216Search in Google Scholar PubMed
[173] Cheng B., Gong H., Li X., Sun Y., Zhang X., Chen H., et al., Silibinin inhibits the toxic aggregation of human islet amyloid polypeptide, Biochem. Biophys. Res. Commun., 2012, 419, 495–499 10.1016/j.bbrc.2012.02.042Search in Google Scholar PubMed
[174] Hagihara M., Takei A., Ishii T., Hayashi F., Kubota K., Wakamatsu K., et al., Inhibitory effects of choline-O-sulfate on amyloid formation of human islet amyloid polypeptide, FEBS open bio, 2012, 2, 20–25 10.1016/j.fob.2012.02.001Search in Google Scholar PubMed PubMed Central
[175] Seeliger J., Winter R., Islet amyloid polypeptide: Aggregation and fibrillogenesis in vitro and its inhibition, Subcell. Biochem., 2012, 65, 185–209 10.1007/978-94-007-5416-4_8Search in Google Scholar PubMed
[176] Engel M.F., vandenAkker C.C., Schleeger M., Velikov K.P., Koenderink G.H., Bonn M., The polyphenol EGCG inhibits amyloid formation less efficiently at phospholipid interfaces than in bulk solution, J. Am. Chem. Soc., 2012, 134, 14781–14788 10.1021/ja3031664Search in Google Scholar PubMed
[177] Fu L., Ma G., Yan E.C., In situ misfolding of human islet amyloid polypeptide at interfaces probed by vibrational sum frequency generation, J. Am. Chem. Soc., 2010, 132, 5405–5412 10.1021/ja909546bSearch in Google Scholar PubMed
[178] Fu L., Liu J., Yan E.C., Chiral sum frequency generation spectroscopy for characterizing protein secondary structures at interfaces, J. Am. Chem. Soc., 2011, 133, 8094–8097 10.1021/ja201575eSearch in Google Scholar PubMed
[179] Suzuki Y., Brender J.R., Hartman K., Ramamoorthy A., Marsh E.N., Alternative pathways of human islet amyloid polypeptide aggregation distinguished by 19F nuclear magnetic resonancedetected kinetics of monomer consumption, Biochemistry, 2012, 51, 8154–8162 10.1021/bi3012548Search in Google Scholar PubMed PubMed Central
[180] Lopes D.H.J., Attar A., Du Z., McDaniel K., Dutt S., Bravo-Rodriguez K., et al., The molecular tweezer CLR01 inhibits islet amyloid polypeptide assembly and toxicity via an unexpected mechanism, 2013, Submitted for publication Search in Google Scholar
[181] Sexton P.M., Findlay D.M., Martin T.J., Calcitonin, Curr. Med. Chem., 1999, 6, 1067–1093 10.2174/092986730611220401164504Search in Google Scholar
[182] Copp D.H., Calcitonin: discovery, development, and clinical application, Clin. Invest. Med., 1994, 17, 268–277 Search in Google Scholar
[183] Huang C.L., Sun L., Moonga B.S., Zaidi M., Molecular physiology and pharmacology of calcitonin, Cellular and molecular biology (Noisyle-Grand, France), 2006, 52, 33–43 Search in Google Scholar
[184] Foster G.V., Calcitonin (thyrocalcitonin), N. Engl. J. Med., 1968, 279, 349–360 10.1056/NEJM196808152790704Search in Google Scholar PubMed
[185] Haymovits A., Rosen J.F., Calcitonin in metabolic disorders, Adv. Metab. Disord., 1972, 60, 177–212 10.1016/B978-0-12-027306-5.50012-7Search in Google Scholar
[186] Huang R., Vivekanandan S., Brender J.R., Abe Y., Naito A., Ramamoorthy A., NMR characterization of monomeric and oligomeric conformations of human calcitonin and its interaction with EGCG, J. Mol. Biol., 2012, 416, 108–120 10.1016/j.jmb.2011.12.023Search in Google Scholar PubMed PubMed Central
[187] Molinari M., Watt K.D., Kruszyna T., Nelson R., Walsh M., Huang W.Y., et al., Acute liver failure induced by green tea extracts: case report and review of the literature, Liver Transpl., 2006, 12, 1892–1895 10.1002/lt.21021Search in Google Scholar PubMed
[188] Isbrucker R.A., Bausch J., Edwards J.A., Wolz E., Safety studies on epigallocatechin gallate (EGCG) preparations. Part 1: genotoxicity, Food Chem. Toxicol., 2006, 44, 626–635 10.1016/j.fct.2005.07.005Search in Google Scholar PubMed
[189] Isbrucker R.A., Edwards J.A., Wolz E., Davidovich A., Bausch J., Safety studies on epigallocatechin gallate (EGCG) preparations. Part 3: teratogenicity and reproductive toxicity studies in rats, Food Chem. Toxicol., 2006, 44, 651–661 10.1016/j.fct.2005.11.002Search in Google Scholar PubMed
[190] Isbrucker R.A., Edwards J.A., Wolz E., Davidovich A., Bausch J., Safety studies on epigallocatechin gallate (EGCG) preparations. Part 2: dermal, acute and short-term toxicity studies, Food Chem. Toxicol., 2006, 44, 636–650 10.1016/j.fct.2005.11.003Search in Google Scholar PubMed
[191] Lambert J.D., Kennett M.J., Sang S., Reuhl K.R., Ju J., Yang C.S., Hepatotoxicity of high oral dose (−)-epigallocatechin-3-gallate in mice, Food Chem. Toxicol., 2010, 48, 409–416 10.1016/j.fct.2009.10.030Search in Google Scholar PubMed PubMed Central
[192] Goodin M.G., Rosengren R.J., Epigallocatechin gallate modulates CYP450 isoforms in the female Swiss-Webster mouse, Toxicol. Sci., 2003, 76, 262–270 10.1093/toxsci/kfh001Search in Google Scholar PubMed
[193] Kapetanovic I.M., Crowell J.A., Krishnaraj R., Zakharov A., Lindeblad M., Lyubimov A., Exposure and toxicity of green tea polyphenols in fasted and non-fasted dogs, Toxicology, 2009, 260, 28–36 10.1016/j.tox.2009.03.007Search in Google Scholar PubMed PubMed Central
[194] Guengerich F.P., Cytochrome p450 and chemical toxicology, Chem. Res. Toxicol., 2008, 21, 70–83 10.1021/tx700079zSearch in Google Scholar PubMed
[195] Huynh H.T., Teel R.W., Effects of plant-derived phenols on rat liver cytochrome P450 2B1 activity, Anticancer Res., 2002, 22, 1699–1703 Search in Google Scholar
[196] Ullmann U., Haller J., Decourt J.P., Girault N., Girault J., Richard-Caudron A.S., et al., A single ascending dose study of epigallocatechin gallate in healthy volunteers, J. Int. Med. Res., 2003, 31, 88–101 10.1177/147323000303100205Search in Google Scholar PubMed
[197] Chow H.H., Hakim I.A., Vining D.R., Crowell J.A., Ranger-Moore J., Chew W.M., et al., Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals, Clin. Cancer Res., 2005, 11, 4627–4633 10.1158/1078-0432.CCR-04-2549Search in Google Scholar PubMed
[198] Ullmann U., Haller J., Decourt J.D., Girault J., Spitzer V., Weber P., Plasma-kinetic characteristics of purified and isolated green tea catechin epigallocatechin gallate (EGCG) after 10 days repeated dosing in healthy volunteers, International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Int. J. Vitam. Nutr. Res., 2004, 74, 269–278 10.1024/0300-9831.74.4.269Search in Google Scholar PubMed
[199] Chow H.H., Cai Y., Hakim I.A., Crowell J.A., Shahi F., Brooks C.A., et al., Pharmacokinetics and safety of green tea polyphenols after multipledose administration of epigallocatechin gallate and polyphenon E in healthy individuals, Clin. Cancer Res., 2003, 9, 3312–3319 Search in Google Scholar
[200] Hsu C.H., Liao Y.L., Lin S.C., Tsai T.H., Huang C.J., Chou P., Does supplementation with green tea extract improve insulin resistance in obese type 2 diabetics? A randomized, double-blind, and placebocontrolled clinical trial, Altern. Med. Rev., 2011, 16, 157–163 Search in Google Scholar
[201] Jimenez-Saenz M., Martinez-Sanchez Mdel C., Acute hepatitis associated with the use of green tea infusions, J. Hepatol., 2006, 44, 616–617 10.1016/j.jhep.2005.11.041Search in Google Scholar PubMed
[202] Crew K.D., Brown P., Greenlee H., Bevers T.B., Arun B., Hudis C., et al., Phase IB randomized, double-blinded, placebo-controlled, dose escalation study of polyphenon E in women with hormone receptor-negative breast cancer, Cancer Prev. Res., 2012, 5, 1144–1154 10.1158/1940-6207.CAPR-12-0117Search in Google Scholar PubMed PubMed Central
[203] Bonkovsky H.L., Hepatotoxicity associated with supplements containing Chinese green tea (Camellia sinensis), Ann. Intern. Med., 2006, 144, 68–71 10.7326/0003-4819-144-1-200601030-00020Search in Google Scholar PubMed
[204] Mazzanti G., Menniti-Ippolito F., Moro P.A., Cassetti F., Raschetti R., Santuccio C., et al., Hepatotoxicity from green tea: a review of the literature and two unpublished cases, Eur. J. Clin. Pharmacol., 2009, 65, 331–341 10.1007/s00228-008-0610-7Search in Google Scholar PubMed
[205] Attar A., Chan W.-T.C., Klärner F.-G., Schrader T., Bitan G., Safety and pharmacokinetic characterization of the molecular tweezer CLR01 in vivo, 2013, Manuscript in preparation Search in Google Scholar
[206] Obach R.S., Walsky R.L., Venkatakrishnan K., Gaman E.A., Houston J.B., Tremaine L.M., The utility of in vitro cytochrome P450 inhibition data in the prediction of drug-drug interactions, J. Pharmacol. Exp. Ther., 2006, 316, 336–348 10.1124/jpet.105.093229Search in Google Scholar PubMed
[207] Williamson G., Dionisi F., Renouf M., Flavanols from green tea and phenolic acids from coffee: critical quantitative evaluation of the pharmacokinetic data in humans after consumption of single doses of beverages, Mol. Nutr. Food Res., 2011, 55, 864–873 10.1002/mnfr.201000631Search in Google Scholar PubMed
[208] Yang C.S., Chen L., Lee M.J., Balentine D., Kuo M.C., Schantz S.P., Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers, Cancer Epidemiol. Biomarkers Prev., 1998, 7, 351–354 Search in Google Scholar
[209] Chow H.H., Cai Y., Alberts D.S., Hakim I., Dorr R., Shahi F., et al., Phase I pharmacokinetic study of tea polyphenols following single-dose administration of epigallocatechin gallate and polyphenon E, Cancer Epidemiol. Biomarkers Prev., 2001, 10, 53–58 Search in Google Scholar
[210] Renouf M., Guy P., Marmet C., Longet K., Fraering A.L., Moulin J., et al., Plasma appearance and correlation between coffee and green tea metabolites in human subjects, Br. J. Nutr., 2010, 104, 1635–1640 10.1017/S0007114510002709Search in Google Scholar PubMed
[211] Van Amelsvoort J.M., Van Hof K.H., Mathot J.N., Mulder T.P., Wiersma A., Tijburg L.B., Plasma concentrations of individual tea catechins after a single oral dose in humans, Xenobiotica, 2001, 31, 891–901 10.1080/00498250110079149Search in Google Scholar PubMed
[212] Lee M.J., Wang Z.Y., Li H., Chen L., Sun Y., Gobbo S., et al., Analysis of plasma and urinary tea polyphenols in human subjects, Cancer Epidemiol. Biomarkers Prev., 1995, 4, 393–399 Search in Google Scholar
[213] Mateos R., Goya L., Bravo L., Uptake and metabolism of hydroxycinnamic acids (chlorogenic, caffeic, and ferulic acids) by HepG2 cells as a model of the human liver, J. Agric. Food Chem., 2006, 54, 8724–8732 10.1021/jf061664gSearch in Google Scholar PubMed
[214] Meng X., Sang S., Zhu N., Lu H., Sheng S., Lee M.J., et al., Identification and characterization of methylated and ring-fission metabolites of tea catechins formed in humans, mice, and rats, Chem. Res. Toxicol., 2002, 15, 1042–1050 10.1021/tx010184aSearch in Google Scholar PubMed
[215] Walle T., Methylation of dietary flavones greatly improves their hepatic metabolic stability and intestinal absorption, Mol. Pharm., 2007, 4, 826–832 10.1021/mp700071dSearch in Google Scholar PubMed
[216] Maeda-Yamamoto M., Ema K., Monobe M., Tokuda Y., Tachibana H., Epicatechin-3-O-(3″-O-methyl)-gallate content in various tea cultivars (Camellia sinensis L.) and its in vitro inhibitory effect on histamine release, J. Agric. Food Chem., 2012, 60, 2165–2170 10.1021/jf204497bSearch in Google Scholar PubMed
[217] Harada M., Kan Y., Naoki H., Fukui Y., Kageyama N., Nakai M., et al., Identification of the major antioxidative metabolites in biological fluids of the rat with ingested (+)-catechin and (−)-epicatechin, Biosci. Biotechnol. Biochem., 1999, 63, 973–977 10.1271/bbb.63.973Search in Google Scholar PubMed
[218] Giunta B., Hou H., Zhu Y., Salemi J., Ruscin A., Shytle R.D., et al., Fish oil enhances anti-amyloidogenic properties of green tea EGCG in Tg2576 mice, Neurosci. Lett., 2010, 471, 134–138 10.1016/j.neulet.2010.01.026Search in Google Scholar
[219] Sang S., Lee M.J., Hou Z., Ho C.T., Yang C.S., Stability of tea polyphenol (−)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions, J. Agric. Food Chem., 2005, 53, 9478–9484 10.1021/jf0519055Search in Google Scholar
[220] Ishii T., Mori T., Tanaka T., Mizuno D., Yamaji R., Kumazawa S., et al., Covalent modification of proteins by green tea polyphenol (−)-epigallocatechin-3-gallate through autoxidation, Free Radic. Biol. Med., 2008, 45, 1384–1394 10.1016/j.freeradbiomed.2008.07.023Search in Google Scholar
[221] Sato M., Murakami K., Uno M., Nakagawa Y., Katayama S., Akagi K.I., et al., Site-specific inhibitory mechanism for amyloid-β42 aggregation by catechol-type flavonoids targeting the Lys residues, J. Biol. Chem., 2013 10.1074/jbc.M113.464222Search in Google Scholar
[222] Okada K., Wangpoengtrakul C., Osawa T., Toyokuni S., Tanaka K., Uchida K., 4-hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress — Identification of proteasomes as target molecules, J. Biol. Chem., 1999, 274, 23787–23793 10.1074/jbc.274.34.23787Search in Google Scholar
[223] Qin Z., Hu D., Han S., Reaney S.H., Di Monte D.A., Fink A.L., Effect of 4-hydroxy-2-nonenal modification on α-synuclein aggregation, J. Biol. Chem., 2007, 282, 5862–5870 10.1074/jbc.M608126200Search in Google Scholar
[224] Perez M., Cuadros R., Smith M.A., Perry G., Avila J., Phosphorylated, but not native, tau protein assembles following reaction with the lipid peroxidation product, 4-hydroxy-2-nonenal, FEBS Lett., 2000, 486, 270–274 10.1016/S0014-5793(00)02323-1Search in Google Scholar
© 2013 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.