Abstract
Memory consolidation is the process by which relevant information is selected and transferred from a short-term, fragile state, into a stable, longer term domain from which it can be recalled. Effective memory underpins our ability to carry out everyday activities. When memory consolidation fails, such as in Alzheimer’s disease, the consequences can be devastating. Understanding the neurobiology of memory will help develop treatments for patients with memory loss. Here we describe the myriad processes involved in memory consolidation, including cholinergic and dopaminergic neurotransmission predominantly in hippocampal networks. We discuss established therapies as well as potential novel strategies for boosting cognition. Future approaches to enhancement of memory consolidation include not only pharmacological and neurosurgical treatments, but also lifestyle interventions — for example, modifications to sleep, exercise and diet.
[1] Launer L.J., Andersen K., Dewey M.E., Letenneur L., Ott A., Amaducci L.A., et al., Rates and risk factors for dementia and Alzheimer’s disease — Results from EURODEM pooled analyses, Neurology, 1999, 52, 78–84 10.1212/WNL.52.1.78Search in Google Scholar
[2] Braak H., Braak E., Staging of Alzheimer’s disease-related neurofibrillary changes, Neurobiol. Aging, 1995, 16, 271–278 10.1016/0197-4580(95)00021-6Search in Google Scholar
[3] Schuff N., Woerner N., Boreta L., Kornfield T., Shaw L.M., Trojanowski J.Q., et al., MRI of hippocampal volume loss in early Alzheimers disease in relation to ApoE genotype and biomarkers, Brain, 2009, 132, 1067–1077 10.1093/brain/awp007Search in Google Scholar
[4] McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Kawas C.H., et al., The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement., 2011, 7, 263–269 10.1016/j.jalz.2011.03.005Search in Google Scholar
[5] Vincent A., Buckley C., Schott J.M., Baker I., Dewar B.K., Detert N., et al., Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis, Brain, 2004, 127, 701–712 10.1093/brain/awh077Search in Google Scholar
[6] Spencer R.M.C., Gouw A.M., Ivry R.B., Age-related decline of sleepdependent consolidation, Learn. Mem., 2007, 14, 480–484 10.1101/lm.569407Search in Google Scholar
[7] Buzsáki G., Two-stage model of memory trace formation — a role for “noisy” brain states, Neuroscience, 1989, 31, 551–570 10.1016/0306-4522(89)90423-5Search in Google Scholar
[8] Rasch B., Born J., Maintaining memories by reactivation, Curr. Opin. Neurobiol., 2007, 17, 698–703 10.1016/j.conb.2007.11.007Search in Google Scholar PubMed
[9] Stickgold R., James L., Hobson J.A., Visual discrimination learning requires sleep after training, Nat. Neurosci., 2000, 3, 1237–1238 10.1038/81756Search in Google Scholar PubMed
[10] Fischer S., Hallschmid M., Elsner A.L., Born J., Sleep forms memory for finger skills, Proc. Natl. Acad. Sci. USA, 2002, 99, 11987–11991 10.1073/pnas.182178199Search in Google Scholar PubMed PubMed Central
[11] Rasch B., Buechel C., Gais S., Born J., Odor cues during slow-wave sleep prompt declarative memory consolidation, Science, 2007, 315, 1426–1429 10.1126/science.1138581Search in Google Scholar
[12] Buzsáki G., Hippocampal sharp waves — their origin and significance, Brain Res., 1986, 398, 242–252 10.1016/0006-8993(86)91483-6Search in Google Scholar
[13] Behrens C.J., van den Boom L.P., de Hoz L., Friedman A., Heinemann U., Induction of sharp wave-ripple complexes in vitro and reorganization of hippocampal networks, Nat. Neurosci., 2005, 8, 1560–1567 10.1038/nn1571Search in Google Scholar
[14] Sirota A., Csicsvari J., Buhl D., Buzsáki G., Communication between neocortex and hippocampus during sleep in rodents, Proc. Natl. Acad. Sci. USA, 2003, 100, 2065–2069 10.1073/pnas.0437938100Search in Google Scholar
[15] Ji D., Wilson M.A., Coordinated memory replay in the visual cortex and hippocampus during sleep, Nat. Neurosci., 2007, 10, 100–107 10.1038/nn1825Search in Google Scholar
[16] Peyrache A., Khamassi M., Benchenane K., Wiener S.I., Battaglia F.P., Replay of rule-learning related neural patterns in the prefrontal cortex during sleep, Nat. Neurosci., 2009, 12, 919–926 10.1038/nn.2337Search in Google Scholar
[17] Gauthier S., Scheltens P., Can we do better in developing new drugs for Alzheimer’s disease?, Alzheimers Dement., 2009, 5, 489–491 10.1016/j.jalz.2009.09.002Search in Google Scholar
[18] Bartus R.T., Dean R.L., Beer B., Lippa A.S., The cholinergic hypothesis of geriatric memory dysfunction, Science, 1982, 217, 408–417 10.1126/science.7046051Search in Google Scholar
[19] Davies P., Maloney A.J.F., Selective loss of central cholinergic neurons in Alzheimer’s disease, Lancet, 1976, 2, 1403–1403 10.1016/S0140-6736(76)91936-XSearch in Google Scholar
[20] Drachman D.A., Leavitt J., Human memory and cholinergic system — relationship to aging, Arch. Neurol., 1974, 30, 113–121 10.1001/archneur.1974.00490320001001Search in Google Scholar PubMed
[21] Ellis B.W., Johns M.W., Lancaster R., Raptopoulos P., Angelopoulos N., Priest R.G., The St. Mary’s Hospital sleep questionnaire: a study of reliability, Sleep, 1981, 4, 93–97 10.1093/sleep/4.1.93Search in Google Scholar
[22] Bodick N.C., Offen W.W., Levey A.I., Cutler N.R., Gauthier S.G., Satlin A., et al., Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease, Arch. Neurol., 1997, 54, 465–473 10.1001/archneur.1997.00550160091022Search in Google Scholar
[23] Levey A.I., Immunological localization of m1-m5 muscarinic acetylcholine-receptors in peripheral-tissues and brain, Life Sci., 1993, 52, 441–448 10.1016/0024-3205(93)90300-RSearch in Google Scholar
[24] Roldán G., Bolaños-Badillo E., González-Sánchez H., Quirarte G.L., Prado-Alcalá R.A., Selective M1 muscarinic receptor antagonists disrupt memory consolidation of inhibitory avoidance in rats, Neurosci. Lett., 1997, 230, 93–96 10.1016/S0304-3940(97)00489-8Search in Google Scholar
[25] Ferreira A.R., Fürstenau L., Blanco C., Kornisiuk E., Sánchez G., Daroit D., et al., Role of hippocampal M-1 and M-4 muscarinic receptor subtypes in memory consolidation in the rat, Pharmacol. Biochem. Behav., 2003, 74, 411–415 10.1016/S0091-3057(02)01007-9Search in Google Scholar
[26] Anagnostaras S.G., Murphy G.G., Hamilton S.E., Mitchell S.L., Rahnama N.P., Nathanson N.M., et al., Selective cognitive dysfunction in acetylcholine M-1 muscarinic receptor mutant mice, Nat. Neurosci., 2003, 6, 51–58 10.1038/nn992Search in Google Scholar PubMed
[27] Nissen C., Power A.E., Noftinger E.A., Feige B., Voderholzer U., Kloepfer C., et al., M-1 muscarinic acetylcholine receptor agonism alters sleep without affecting memory consolidation, J. Cogn. Neurosci., 2006, 18, 1799–1807 10.1162/jocn.2006.18.11.1799Search in Google Scholar PubMed
[28] Foster N.L., Aldrich M.S., Bluemlein L., White R.F., Berent S., Failure of cholinergic agonist RS-86 to improve cognition and movement in PSP despite effects on sleep, Neurology, 1989, 39, 257–261 10.1212/WNL.39.2.257Search in Google Scholar PubMed
[29] Deuschl G., Schade-Brittinger C., Krack P., Volkmann J., Schäfer H., Bötzel K., et al., A randomized trial of deep-brain stimulation for Parkinson’s disease, N. Engl. J. Med., 2006, 355, 896–908 10.1056/NEJMoa060281Search in Google Scholar PubMed
[30] Huys D., Möller M., Kim E.H., Hardenacke K., Huff W., Klosterkötter J., et al., Deep brain stimulation for psychiatric disorders: historical basis, Nervenarzt, 2012, 83, 1156–1168 10.1007/s00115-011-3309-4Search in Google Scholar PubMed
[31] Laxton A.W., Tang-Wai D.F., McAndrews M.P., Zumsteg D., Wennberg R., Keren R., et al., A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s Disease, Ann. Neurol., 2010, 68, 521–534 10.1002/ana.22089Search in Google Scholar PubMed
[32] Suthana N., Haneef Z., Stern J., Mukamel R., Behnke E., Knowlton B., et al., Memory enhancement and deep-brain stimulation of the entorhinal area, N. Engl. J. Med., 2012, 366, 502–510 10.1056/NEJMoa1107212Search in Google Scholar PubMed PubMed Central
[33] Bethus I., Tse D., Morris R.G.M., Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptordependent paired associates, J. Neurosci., 2010, 30, 1610–1618 10.1523/JNEUROSCI.2721-09.2010Search in Google Scholar PubMed PubMed Central
[34] Chowdhury R., Guitart-Masip M., Bunzeck N., Dolan R.J., Düzel E., Dopamine modulates episodic memory persistence in old age, J. Neurosci., 2012, 32, 14193–14204 10.1523/JNEUROSCI.1278-12.2012Search in Google Scholar PubMed PubMed Central
[35] Coulthard E.J., Bogacz R., Javed S., Mooney L.K., Murphy G., Keeley S., et al., Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making, Brain, 2012, 135, 3721–3734 10.1093/brain/aws273Search in Google Scholar PubMed PubMed Central
[36] Lisman J., Grace A.A., Düzel E., A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP, Trends Neurosci., 2011, 34, 536–547 10.1016/j.tins.2011.07.006Search in Google Scholar PubMed PubMed Central
[37] Bernabeu R., Bevilaqua L., Ardenghi P., Bromberg E., Schmitz P., Bianchin M., et al., Involvement of hippocampal cAMP/cAMPdependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats, Proc. Natl. Acad. Sci. USA, 1997, 94, 7041–7046 10.1073/pnas.94.13.7041Search in Google Scholar PubMed PubMed Central
[38] Hannestad J., Gallezot J.-D., Planeta-Wilson B., Lin S.-F., Williams W.A., van Dyck C.H., et al., Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo, Biol. Psychiatry, 2010, 68, 854–860 10.1016/j.biopsych.2010.06.017Search in Google Scholar PubMed PubMed Central
[39] Volkow N.D., Fowler J.S., Wang G., Ding Y., Gatley S.J., Mechanism of action of methylphenidate: insights from PET imaging studies, J. Atten. Disord., 2002, 6,Suppl. 1, S31–43 10.1177/070674370200601S05Search in Google Scholar PubMed
[40] Andersen M.L., Kessler E., Murnane K.S., McClung J.C., Tufik S., Howell L.L., Dopamine transporter-related effects of modafinil in rhesus monkeys, Psychopharmacology, 2010, 210, 439–448 10.1007/s00213-010-1839-2Search in Google Scholar PubMed PubMed Central
[41] Outram S.M., The use of methylphenidate among students: the future of enhancement?, J. Med. Ethics, 2010, 36, 198–202 10.1136/jme.2009.034421Search in Google Scholar PubMed
[42] Turner D.C., Robbins T.W., Clark L., Aron A.R., Dowson J., Sahakian B.J., Cognitive enhancing effects of modafinil in healthy volunteers, Psychopharmacology, 2003, 165, 260–269 10.1007/s00213-002-1250-8Search in Google Scholar PubMed
[43] Linssen A.M.W., Vuurman E.F.P.M., Sambeth A., Riedel W.J., Methylphenidate produces selective enhancement of declarative memory consolidation in healthy volunteers, Psychopharmacology, 2012, 221, 611–619 10.1007/s00213-011-2605-9Search in Google Scholar PubMed PubMed Central
[44] Berridge C.W., Devilbiss D.M., Psychostimulants as cognitive Enhancers: the prefrontal cortex, catecholamines, and attentiondeficit/ hyperactivity disorder, Biol. Psychiatry, 2011, 69, E101–111 10.1016/j.biopsych.2010.06.023Search in Google Scholar PubMed PubMed Central
[45] Pierard C., Liscia P., Chauveau F., Coutan M., Corio M., Krazem A., et al., Differential effects of total sleep deprivation on contextual and spatial memory: modulatory effects of modafinil, Pharmacol. Biochem. Behav., 2011, 97, 399–405 10.1016/j.pbb.2010.09.016Search in Google Scholar PubMed
[46] Müller U., Rowe J.B., Rittman T., Lewis C., Robbins T.W., Sahakian B.J., Effects of modafinil on non-verbal cognition, task enjoyment and creative thinking in healthy volunteers, Neuropharmacology, 2013, 64, 490–495 10.1016/j.neuropharm.2012.07.009Search in Google Scholar PubMed PubMed Central
[47] Scammell T.E., Estabrooke I.V., McCarthy M.T., Chemelli R.M., Yanagisawa M., Miller M.S., et al., Hypothalamic arousal regions are activated during modafinil-induced wakefulness, J. Neurosci., 2000, 20, 8620–8628 10.1523/JNEUROSCI.20-22-08620.2000Search in Google Scholar
[48] Meneses A., Ponce-Lopez T., Tellez R., Gonzalez R., Castillo C., Gasbarri A., Effects of d-amphetamine on short- and long-term memory in spontaneously hypertensive, Wistar-Kyoto and Sprague-Dawley rats, Behav. Brain Res., 2011, 216, 472–476 10.1016/j.bbr.2010.08.035Search in Google Scholar PubMed
[49] Wiig K.A., Whitlock J.R., Epstein M.H., Carpenter R.L., Bear M.F., The levo enantiomer of amphetamine increases memory consolidation and gene expression in the hippocampus without producing locomotor stimulation, Neurobiol. Learn. Mem., 2009, 92, 106–113 10.1016/j.nlm.2009.02.001Search in Google Scholar PubMed
[50] Ballard M.E., Gallo D.A., de Wit H., THC impairs, and amphetamine facilitates, memory encoding preferentially for emotionally salient stimuli, Soc. Neurosci. Abstr., 2011, 41, 752.06 Search in Google Scholar
[51] Advokat C., Scheithauer M., Attention-deficit hyperactivity disorder (ADHD) stimulant medications as cognitive enhancers, Front. Neurosci., 2013, 7, 82 10.3389/fnins.2013.00082Search in Google Scholar PubMed PubMed Central
[52] Sumowski J.F., Chiaravalloti N.D., Erlanger D.M., Kaushik T., Benedict R., DeLuca J., L-amphetamine improves memory capacity among memory-impaired patients with multiple sclerosis, Neurology, 2011, 76,Suppl. 4, A482 Search in Google Scholar
[53] Jones S., Kornblum J.L., Kauer J.A., Amphetamine blocks long-term synaptic depression in the ventral tegmental area, J. Neurosci., 2000, 20, 5575–5580 10.1523/JNEUROSCI.20-15-05575.2000Search in Google Scholar
[54] Del Arco A., González-Mora J.L., Armas V.R., Mora F., Amphetamine increases the extracellular concentration of glutamate in striatum of the awake rat: involvement of high affinity transporter mechanisms, Neuropharmacology, 1999, 38, 943–954 10.1016/S0028-3908(99)00043-XSearch in Google Scholar
[55] Drevets W.C., Gautier C., Price J.C., Kupfer D.J., Kinahan P.E., Grace A.A., et al., Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria, Biol. Psychiatry, 2001, 49, 81–96 10.1016/S0006-3223(00)01038-6Search in Google Scholar
[56] Imperato A., Obinu M.C., Gessa G.L., Effects of cocaine and amphetamine on acetylcholine-release in the hippocampus and caudate nucleus, Eur. J. Pharmacol., 1993, 238, 377–381 10.1016/0014-2999(93)90869-JSearch in Google Scholar
[57] Day J.C., Fibiger H.C., Dopaminergic regulation of septohippocampal cholinergic neurons, J. Neurochem., 1994, 63, 2086–2092 10.1046/j.1471-4159.1994.63062086.xSearch in Google Scholar
[58] Ponomarenko A.A., Lin J.S., Selbach O., Haas H.L., Temporal pattern of hippocampal high-frequency oscillations during sleep after stimulant-evoked waking, Neuroscience, 2003, 121, 759–769 10.1016/S0306-4522(03)00524-4Search in Google Scholar
[59] Bekinschtein P., Cammarota M., Igaz L.M., Bevilaqua L.R.M., Izquierdo I., Medina J.H., Persistence of long-term memory storage requires a late protein synthesis- and BDNF-dependent phase in the hippocampus, Neuron, 2007, 53, 261–277 10.1016/j.neuron.2006.11.025Search in Google Scholar PubMed
[60] Rossato J.I., Bevilaqua L.R.M., Izquierdo I., Medina J.H., Cammarota M., Dopamine controls persistence of long-term memory storage, Science, 2009, 325, 1017–1020 10.1126/science.1172545Search in Google Scholar PubMed
[61] Pencea V., Bingaman K.D., Wiegand S.J., Luskin M.B., Infusion of brainderived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus, J. Neurosci., 2001, 21, 6706–6717 10.1523/JNEUROSCI.21-17-06706.2001Search in Google Scholar
[62] Nagahara A.H., Merrill D.A., Coppola G., Tsukada S., Schroeder B.E., Shaked G.M., et al., Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease, Nat. Med., 2009, 15, 331–337 10.1038/nm.1912Search in Google Scholar PubMed PubMed Central
[63] Patel N.K., Gill S.S., GDNF delivery for Parkinson’s disease, Acta Neurochir. Suppl., 2007, 97, 135–154 10.1007/978-3-211-33081-4_16Search in Google Scholar PubMed
[64] Donlea J.M., Thimgan M.S., Suzuki Y., Gottschalk L., Shaw P.J., Inducing sleep by remote control facilitates memory consolidation in Drosophila, Science, 2011, 332, 1571–1576 10.1126/science.1202249Search in Google Scholar PubMed PubMed Central
[65] Mathias S., Zihl J., Steiger A., Lancel M., Effect of repeated gaboxadol administration on night sleep and next-day performance in healthy elderly subjects, Neuropsychopharmacology, 2005, 30, 833–841 10.1038/sj.npp.1300641Search in Google Scholar PubMed
[66] Faulhaber J., Steiger A., Lancel M., The GABA(A) agonist THIP produces slow wave sleep and reduces spindling activity in NREM sleep in humans, Psychopharmacology, 1997, 130, 285–291 10.1007/s002130050241Search in Google Scholar PubMed
[67] Boyle J., Wolford D., Gargano C., McCrea J., Cummings C., Cerchio K., et al., Next-day residual effects of gaboxadol and flurazepam administered at bedtime: a randomized double-blind study in healthy elderly subjects, Hum. Psychopharmacol., 2009, 24, 61–71 10.1002/hup.986Search in Google Scholar PubMed
[68] Dijk D.J., James L.M., Peters S., Walsh J.K., Deacon S., Sex differences and the effect of gaboxadol and zolpidem on EEG power spectra in NREM and REM sleep, J. Psychopharmacol., 2010, 24, 1613–1618 10.1177/0269881109105788Search in Google Scholar PubMed
[69] Massimini M., Ferrarelli F., Esser S.K., Riedner B.A., Huber R., Murphy M., et al., Triggering sleep slow waves by transcranial magnetic stimulation, Proc. Natl. Acad. Sci. USA, 2007, 104, 8496–8501 10.1073/pnas.0702495104Search in Google Scholar PubMed PubMed Central
[70] Marshall L., Helgadottir H., Moelle M., Born J., Boosting slow oscillations during sleep potentiates memory, Nature, 2006, 444, 610–613 10.1038/nature05278Search in Google Scholar PubMed
[71] Toni G., Riedner B.A., Hulse B.K., Ferrarelli F., Sarasso S., Enhancing sleep slow waves with natural stimuli, Medicamundi, 2010, 54, 73–79 Search in Google Scholar
[72] Ngo H.-V.V., Martinetz T., Born J., Moelle M., Auditory closed-loop stimulation of the sleep slow oscillation enhances memory, Neuron, 2013, 78, 545–553 10.1016/j.neuron.2013.03.006Search in Google Scholar PubMed
[73] van Praag H., Christie B.R., Sejnowski T.J., Gage F.H., Running enhances neurogenesis, learning, and long-term potentiation in mice, Proc. Natl. Acad. Sci. USA, 1999, 96, 13427–13431 10.1073/pnas.96.23.13427Search in Google Scholar PubMed PubMed Central
[74] van Praag H., Neurogenesis and exercise: past and future directions, Neuromolecular Med., 2008, 10, 128–140 10.1007/s12017-008-8028-zSearch in Google Scholar PubMed
[75] Berggren K.L., Kerr A.L., Iles B.W., Nye S.H., Swain R.A., Exerciseinduced angiogenesis in the CNS of Dahl Salt-Sensitive and SSBN.13 consomic rats, Soc. Neurosci. Abstr., 2008, 38, 219.10 Search in Google Scholar
[76] Chaddock L., Erickson K.I., Prakash R.S., Kim J.S., Voss M.W., VanPatter M., et al., A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children, Brain Res., 2010, 1358, 172–183 10.1016/j.brainres.2010.08.049Search in Google Scholar PubMed PubMed Central
[77] Erickson K.I., Voss M.W., Prakash R.S., Basak C., Szabo A., Chaddock L., et al., Exercise training increases size of hippocampus and improves memory, Proc. Natl. Acad. Sci. USA, 2011, 108, 3017–3022 10.1073/pnas.1015950108Search in Google Scholar PubMed PubMed Central
[78] Coles K., Tomporowski P.D., Effects of acute exercise on executive processing, short-term and long-term memory, J. Sports Sci., 2008, 26, 333–344 10.1080/02640410701591417Search in Google Scholar PubMed
[79] Gould E., Reeves A.J., Fallah M., Tanapat P., Gross C.G., Fuchs E., Hippocampal neurogenesis in adult Old World primates, Proc. Nat. Acad. Sci. USA, 1999, 96, 5263–5267 10.1073/pnas.96.9.5263Search in Google Scholar PubMed PubMed Central
[80] Amrein I., Isler K., Lipp H.-P., Comparing adult hippocampal neurogenesis in mammalian species and orders: influence of chronological age and life history stage, Eur. J. Neurosci., 2011, 34, 978–987 10.1111/j.1460-9568.2011.07804.xSearch in Google Scholar PubMed
[81] Apostolova L.G., Green A.E., Babakchanian S., Hwang K.S., Chou Y.-Y., Toga A.W., et al., Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer disease, Alzheimer Dis. Assoc. Disord., 2012, 26, 17–27 10.1097/WAD.0b013e3182163b62Search in Google Scholar PubMed PubMed Central
[82] Garcia-Mesa Y., Carlos Lopez-Ramos J., Gimenez-Llort L., Revilla S., Guerra R., Gruart A., et al., Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice, J. Alzheimers Dis., 2011, 24, 421–454 10.3233/JAD-2011-101635Search in Google Scholar PubMed
[83] Rodriguez J.J., Noristani H.N., Olabarria M., Fletcher J., Somerville T.D.D., Yeh C.Y., et al., Voluntary running and environmental enrichment restores impaired hippocampal neurogenesis in a triple transgenic mouse model of Alzheimer’s disease, Curr. Alzheimer Res., 2011, 8, 707–717 10.2174/156720511797633214Search in Google Scholar PubMed
[84] Nagamatsu L.S., Chan A., Davis J.C., Beattie J.C., Beattie B.L., Graf P., et al., Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: a 6-month randomized controlled trial, J. Aging Res., 2013, 861893 10.1155/2013/861893Search in Google Scholar PubMed PubMed Central
[85] Lautenschlager N.T., Cox K.L., Flicker L., Foster J.K., van Bockxmeer F.M., Xiao J., et al., Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial, JAMA, 2008, 300, 1027–1037 10.1001/jama.300.9.1027Search in Google Scholar
[86] Cassilhas R.C., Lee K.S., Fernandes J., Oliveira M.G.M., Tufik S., Meeusen R., et al., Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms, Neuroscience, 2012, 202, 309–317 10.1016/j.neuroscience.2011.11.029Search in Google Scholar
[87] Chen D.Y., Stern S.A., Garcia-Osta A., Saunier-Rebori B., Pollonini G., Bambah-Mukku D., et al., A critical role for IGF-II in memory consolidation and enhancement, Nature, 2011, 469, 491–497 10.1038/nature09667Search in Google Scholar
[88] Dash M.B., Bellesi M., Tononi G., Cirelli C., Sleep/wake dependent changes in cortical glucose concentrations, J. Neurochem., 2013, 124, 79–89 10.1111/jnc.12063Search in Google Scholar
[89] Jones E.K., Suenram-Lea S.I., Wesnes K.A., Acute ingestion of different macronutrients differentially enhances aspects of memory and attention in healthy young adults, Biol. Psychol., 2012, 89, 477–486 10.1016/j.biopsycho.2011.12.017Search in Google Scholar
[90] Messier C., Glucose improvement of memory: a review, Eur. J. Pharmacol., 2004, 490, 33–57 10.1016/j.ejphar.2004.02.043Search in Google Scholar
[91] Smith M.A., Riby L.M., van Eekelen J.A.M., Foster J.K., Glucose enhancement of human memory: a comprehensive research review of the glucose memory facilitation effect, Neurosci. Biobehav. Rev., 2011, 35, 770–783 10.1016/j.neubiorev.2010.09.008Search in Google Scholar
[92] Sunram-Lea S.I., Foster J.K., Durlach P., Perez C., Glucose facilitation of cognitive performance in healthy young adults: examination of the influence of fast-duration, time of day and pre-consumption plasma glucose levels, Psychopharmacology, 2001, 157, 46–54 10.1007/s002130100771Search in Google Scholar
[93] Sunram-Lea S.I., Foster J.K., Durlach P., Perez C., Investigation into the significance of task difficulty and divided allocation of resources on the glucose memory facilitation effect, Psychopharmacology, 2002, 160, 387–397 10.1007/s00213-001-0987-9Search in Google Scholar
[94] Sunram-Lea S.I., Foster J.K., Durlach P., Perez C., The effect of retrograde and anterograde glucose administration on memory performance in healthy young adults, Behav. Brain Res., 2002, 134, 505–516 10.1016/S0166-4328(02)00086-4Search in Google Scholar
[95] Varady K.A., Hellerstein M.K., Alternate-day fasting and chronic disease prevention: a review of human and animal trials, Am. J. Clin. Nutr., 2007, 86, 7–13 10.1093/ajcn/86.1.7Search in Google Scholar
[96] Partridge L., Piper M.D.W., Mair W., Dietary restriction in Drosophila, Mech. Ageing Dev., 2005, 126, 938–950 10.1016/j.mad.2005.03.023Search in Google Scholar
[97] Mattison J.A., Roth G.S., Beasley T.M., Tilmont E.M., Handy A.M., Herbert R.L., et al., Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study, Nature, 2012, 489, 318–321 10.1038/nature11432Search in Google Scholar
[98] Weindruch R., Walford R.L., Fligiel S., Guthrie D., The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy-intake, J. Nutr., 1986, 116, 641–654 10.1093/jn/116.4.641Search in Google Scholar
[99] Colman R.J., Anderson R.M., Johnson S.C., Kastman E.K., Kosmatka K.J., Beasley T.M., et al., Caloric restriction delays disease onset and mortality in rhesus monkeys, Science, 2009, 325, 201–204 10.1126/science.1173635Search in Google Scholar
[100] Eckles-Smith K., Clayton D., Bickford P., Browning M.D., Caloric restriction prevents age-related deficits in LTP and in NMDA receptor expression, Mol. Brain Res., 2000, 78, 154–162 10.1016/S0169-328X(00)00088-7Search in Google Scholar
[101] Singh R., Lakhanpal D., Kumar S., Sharma S., Kataria H., Kaur M., et al., Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats, Age, 2012, 34, 917–933 10.1007/s11357-011-9289-2Search in Google Scholar PubMed PubMed Central
[102] Qin W., Chachich M., Lane M., Roth G., Bryant M., de Cabo R., et al., Calorie restriction attenuates Alzheimer’s disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus), J. Alzheimers Dis., 2006, 10, 417–422 10.3233/JAD-2006-10411Search in Google Scholar PubMed
[103] Wu P., Shen Q., Dong S., Xu Z., Tsien J.Z., Hu Y., Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice, Neurobiol. Aging, 2008, 29, 1502–1511 10.1016/j.neurobiolaging.2007.03.028Search in Google Scholar PubMed
[104] Thaler S., Choragiewicz T.J., Rejdak R., Fiedorowicz M., Turski W.A., Tulidowicz-Bielak M., et al., Neuroprotection by acetoacetate and beta-hydroxybutyrate against NMDA-induced RGC damage in ratpossible involvement of kynurenic acid, Graefes Arch. Clin. Exp. Ophthal., 2010, 248, 1729–1735 10.1007/s00417-010-1425-7Search in Google Scholar PubMed PubMed Central
[105] Henderson S.T., Ketone bodies as a therapeutic for Alzheimer’s disease, Neurotherapeutics, 2008, 5, 470–480 10.1016/j.nurt.2008.05.004Search in Google Scholar
[106] Reger M.A., Henderson S.T., Hale C., Cholerton B., Baker L.D., Watson G.S., et al., Effects of beta-hydroxybutyrate on cognition in memoryimpaired adults, Neurobiol. Aging, 2004, 25, 311–314 10.1016/S0197-4580(03)00087-3Search in Google Scholar
[107] Dhurandhar E.J., Allison D.B., van Groen T., Kadish I., Hunger in the absence of caloric restriction improves cognition and attenuates Alzheimer’s disease pathology in a mouse model, PLoS One, 2013, 8, e60437 10.1371/journal.pone.0060437Search in Google Scholar PubMed PubMed Central
[108] Cao D.H., Kevala K., Kim J., Moon H.S., Jun S.B., Lovinger D., et al., Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function, J. Neurochem., 2009, 111, 510–521 10.1111/j.1471-4159.2009.06335.xSearch in Google Scholar PubMed PubMed Central
[109] Bhatia H.S., Agrawal R., Sharma S., Huo Y.-X., Ying Z., Gomez-Pinilla F., Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood, PLoS One, 2011, 6, e28451 10.1371/journal.pone.0028451Search in Google Scholar PubMed PubMed Central
[110] Vines A., Delattre A.M., Lima M.M.S., Rodrigues L.S., Suchecki D., Machado R.B., et al., The role of 5-HT1A receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: a possible antidepressant mechanism, Neuropharmacology, 2012, 62, 184–191 10.1016/j.neuropharm.2011.06.017Search in Google Scholar PubMed
[111] Arsenault D., Julien C., Tremblay C., Calon F., DHA improves cognition and prevents dysfunction of entorhinal cortex neurons in 3xTg-AD mice, PLoS One, 2011, 6, e17397 10.1371/journal.pone.0017397Search in Google Scholar PubMed PubMed Central
© 2013 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.