Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 20, 2013

Non-invasive cerebellar stimulation in dystonia

  • Lynton Graetz EMAIL logo and Lynley Bradnam


Primary isolated dystonia is a hyperkinetic movement disorder whereby involuntary muscle contractions cause twisted and abnormal postures. Dystonia of the cervical spine and upper limb may present as sustained muscle contractions or task-specific activity when using the hand or upper limb. There is little understanding of the pathophysiology underlying dystonia and this presents a challenge for clinicians and researchers alike. Emerging evidence that the cerebellum is involved in the pathophysiology of dystonia using network models presents the intriguing concept that the cerebellum could provide a novel target for non-invasive brain stimulation. Non-invasive stimulation to increase cerebellar excitability improved aspects of handwriting and circle drawing in a small cohort of people with focal hand and cervical dystonia. Mechanisms underlying the improvement in function are unknown, but putative pathways may involve the red nucleus and/or the cervical propriospinal system. Furthermore, recent understanding that the cerebellum has both motor and cognitive functions suggests that non-invasive cerebellar stimulation may improve both motor and non-motor aspects of dystonia. We propose a combination of motor and non-motor tasks that challenge cerebellar function may be combined with cerebellar non-invasive brain stimulation in the treatment of focal dystonia. Better understanding of how the cerebellum contributes to dystonia may be gained by using network models such as our putative circuits involving red nucleus and/or the cervical propriospinal system. Finally, novel treatment interventions encompassing both motor and non-motor functions of the cerebellum may prove effective for neurological disorders that exhibit cerebellar dysfunction.

[1] Phukan J., Albanese A., Gasser T., Warner T., Primary dystonia and dystonia-plus syndromes: clinical characteristics, diagnosis, and pathogenesis, Lancet Neurol., 2011, 10, 1074–1085 in Google Scholar

[2] Lim V.K., Health related quality of life in patients with dystonia and their caregivers in New Zealand and Australia, Mov. Disord., 2007, 22, 998–1003 in Google Scholar

[3] Zetterberg L., Aquilonius S.M., Lindmark B., Impact of dystonia on quality of life and health in a Swedish population, Acta Neurol. Scand., 2009, 119, 376–382 in Google Scholar

[4] Batla A., Stamelou M., Bhatia K.P., Treatment of focal dystonia, Curr. Treat. Options Neurol., 2012, 14, 213–229 in Google Scholar

[5] Tassorelli C., Mancini F., Balloni L., Pacchetti C., Sandrini G., Nappi G., et al., Botulinum toxin and neuromotor rehabilitation: An integrated approach to idiopathic cervical dystonia, Mov. Disord., 2006, 21, 2240–2243 in Google Scholar

[6] Zetterberg L., Halvorsen K., Farnstrand C., Aquilonius S.M., Lindmark B., Physiotherapy in cervical dystonia: six experimental single-case studies, Physiother. Theory Pract., 2008, 24, 275–290 in Google Scholar

[7] Jahanshahi M., Torkamani M., Beigi M., Wilkinson L., Page D., Madeley L., et al., Pallidal stimulation for primary generalised dystonia: effect on cognition, mood and quality of life, J. Neurol., 2013, [Epub ahead of print], doi: 10.1007/s00415-013-7161-2 10.1007/s00415-013-7161-2Search in Google Scholar

[8] Petrossian M.T., Paul L.R., Multhaupt-Buell T.J., Eckhardt C., Hayes M.T., Duhaime A.C., et al., Pallidal deep brain stimulation for dystonia: a case series, J. Neurosurg. Pediatr., 2013, [Epub ahead of print], doi: 10.3171/2013.8.PEDS13134 10.3171/2013.8.PEDS13134Search in Google Scholar

[9] Sadnicka A., Kimmich O., Pisarek C., Ruge D., Galea J., Kassavetis P., et al., Pallidal stimulation for cervical dystonia does not correct abnormal temporal discrimination, Mov. Disord., 2013, 28, 1874–1877 in Google Scholar

[10] Witt J.L., Moro E., Ash R.S., Hamani C., Starr P.A., Lozano A.M., et al., Predictive factors of outcome in primary cervical dystonia following pallidal deep brain stimulation, Mov. Disord., 2013, 28, 1451–1455 10.1002/mds.25560Search in Google Scholar

[11] Hallett M., Neurophysiology of dystonia: the role of inhibition, Neurobiol. Dis., 2011, 42, 177–184 in Google Scholar

[12] Kimberley T.J., Pickett K.A., Differential activation in the primary motor cortex during individual digit movement in focal hand dystonia vs. healthy, Restor. Neurol. Neurosci., 2012, 30, 247–254 10.3233/RNN-2012-110183Search in Google Scholar

[13] Benninger D.H., Lomarev M., Lopez G., Pal N., Luckenbaugh D.A., Hallett M., Transcranial direct current stimulation for the treatment of focal hand dystonia, Mov. Disord., 2011, 26, 1698–1702 in Google Scholar

[14] Buttkus F., Baur V., Jabusch H.C., de la Cruz Gomez-Pellin M., Paulus W., Nitsche M.A., et al., Single-session tDCS-supported retraining does not improve fine motor control in musician’s dystonia, Restor. Neurol. Neurosci., 2011, 29, 85–90 10.3233/RNN-2011-0582Search in Google Scholar

[15] Huang Y.Z., Rothwell J.C., Lu C.S., Wang J., Chen R.S., Restoration of motor inhibition through an abnormal premotor-motor connection in dystonia, Mov. Disord., 2010, 25, 696–703 in Google Scholar

[16] Kimberley T.J., Borich M.R., Arora S., Siebner H.R., Multiple sessions of low-frequency repetitive transcranial magnetic stimulation in focal hand dystonia: clinical and physiological effects, Restor. Neurol. Neurosci., 2013, 31, 533–542 10.3233/RNN-120259Search in Google Scholar

[17] Borich M., Arora S., Kimberley T.J., Lasting effects of repeated rTMS application in focal hand dystonia, Restor. Neurol. Neurosci., 2009, 27, 55–65 10.3233/RNN-2009-0461Search in Google Scholar

[18] Jinnah H.A., Hess E.J., A new twist on the anatomy of dystonia: the basal ganglia and the cerebellum?, Neurology, 2006, 67, 1740–1741 in Google Scholar

[19] Neychev V.K., Fan X., Mitev V.I., Hess E.J., Jinnah H.A., The basal ganglia and cerebellum interact in the expression of dystonic movement, Brain, 2008, 131, 2499–2509 in Google Scholar

[20] Neychev V.K., Gross R.E., Lehericy S., Hess E.J., Jinnah H.A., The functional neuroanatomy of dystonia, Neurobiol. Dis., 2011, 42, 185–201 in Google Scholar

[21] Wu C.C., Fairhall S.L., McNair N.A., Hamm J.P., Kirk I.J., Cunnington R., et al., Impaired sensorimotor integration in focal hand dystonia patients in the absence of symptoms, J. Neurol. Neurosurg. Psychiatry, 2010, 81, 659–665 in Google Scholar

[22] Bradnam L., Barry C., The role of the trigeminal sensory nuclear complex in the pathophysiology of cranio-cervical dystonia, J. Neurosci., 2013, 33, 18358–18367 in Google Scholar

[23] Tedesco A.M., Chiricozzi F.R., Clausi S., Lupo M., Molinari M., Leggio M.G., The cerebellar cognitive profile, Brain, 2011, 134, 3672–3686 in Google Scholar

[24] Koziol L.F., Budding D., Andreasen N., D’Arrigo S., Bulgheroni S., Imamizu H., et al., Consensus paper: the cerebellum’s role in movement and cognition, Cerebellum, 2013, [Epub ahead of print], 10.1007/s12311-013-0511-x 10.1007/s12311-013-0511-xSearch in Google Scholar

[25] Wilson B.K., Hess E.J., Animal models for dystonia, Mov. Disord., 2013, 28, 982–989 in Google Scholar

[26] Raike R.S., Pizoli C.E., Weisz C., van den Maagdenberg A.M., Jinnah H.A., Hess E.J., Limited regional cerebellar dysfunction induces focal dystonia in mice, Neurobiol. Dis., 2012, 49C, 200–210 10.1016/j.nbd.2012.07.019Search in Google Scholar

[27] Todorov B., Kros L., Shyti R., Plak P., Haasdijk E.D., Raike R.S., et al., Purkinje cell-specific ablation of Cav2.1 channels is sufficient to cause cerebellar ataxia in mice, Cerebellum, 2012, 11, 246–258 in Google Scholar

[28] Prudente C.N., Pardo C.A., Xiao J., Hanfelt J., Hess E.J., Ledoux M.S., et al., Neuropathology of cervical dystonia, Exp. Neurol., 2013, 241, 95–104 in Google Scholar

[29] Zoons E., Tijssen M.A., Pathologic changes in the brain in cervical dystonia pre- and post-mortem — a commentary with a special focus on the cerebellum, Exp. Neurol., 2013, 247, 130–133 in Google Scholar

[30] Argyelan M., Carbon M., Niethammer M., Ulug A.M., Voss H.U., Bressman S.B., et al., Cerebellothalamocortical connectivity regulates penetrance in dystonia, J. Neurosci., 2009, 29, 9740–9747 in Google Scholar

[31] Doshi A., Rohrer J., Warner T., A case supporting the role of the cerebellum in dystonia, J. Neurol. Neurosurg. Psychiatry, 2013, 84, e2 10.1136/jnnp-2013-306573.153Search in Google Scholar

[32] Hoffland B.S., Bologna M., Kassavetis P., Teo J.T., Rothwell J.C., Yeo C.H., et al., Cerebellar theta burst stimulation impairs eyeblink classical conditioning, J. Physiol., 2012, 590, 887–897 10.1113/jphysiol.2011.218537Search in Google Scholar

[33] Teo J.T., van de Warrenburg B.P., Schneider S.A., Rothwell J.C., Bhatia K.P., Neurophysiological evidence for cerebellar dysfunction in primary focal dystonia, J. Neurol. Neurosurg. Psychiatry, 2009, 80, 80–83 in Google Scholar

[34] Hoffland B.S., Kassavetis P., Bologna M., Teo J.T., Bhatia K.P., Rothwell J.C., et al., Cerebellum-dependent associative learning deficits in primary dystonia are normalized by rTMS and practice, Eur. J. Neurosci., 2013, 38, 2166–2171 in Google Scholar

[35] Bradnam L., Graetz L., McDonnell M., Ridding M., Non-invasive cerebellar stimulation in focal dystonia, Mov. Disord., 2013, 28, S10 10.2478/s13380-013-0143-0Search in Google Scholar

[36] Daskalakis Z.J., Paradiso G.O., Christensen B.K., Fitzgerald P.B., Gunraj C., Chen R., Exploring the connectivity between the cerebellum and motor cortex in humans, J. Physiol., 2004, 557, 689–700 in Google Scholar

[37] Ugawa Y., Uesaka Y., Terao Y., Hanajima R., Kanazawa I., Magnetic stimulation over the cerebellum in humans, Ann. Neurol., 1995, 37, 703–713 in Google Scholar

[38] Oliveri M., Torriero S., Koch G., Salerno S., Petrosini L., Caltagirone C., The role of transcranial magnetic stimulation in the study of cerebellar cognitive function, Cerebellum, 2007, 6, 95–101 in Google Scholar

[39] Kassavetis P., Hoffland B.S., Saifee T.A., Bhatia K.P., van de Warrenburg B.P., Rothwell J.C., et al., Cerebellar brain inhibition is decreased in active and surround muscles at the onset of voluntary movement, Exp. Brain Res., 2011, 209, 437–442 in Google Scholar

[40] Brighina F., Romano M., Giglia G., Saia V., Puma A., Giglia F., et al., Effects of cerebellar TMS on motor cortex of patients with focal dystonia: a preliminary report, Exp. Brain Res., 2009, 192, 651–656 in Google Scholar

[41] Lu M.K., Tsai C.H., Ziemann U., Cerebellum to motor cortex paired associative stimulation induces bidirectional STDP-like plasticity in human motor cortex, Front. Hum. Neurosci., 2012, 6, 260 10.3389/fnhum.2012.00260Search in Google Scholar

[42] Bostan A.C., Dum R.P., Strick P.L., The basal ganglia communicate with the cerebellum, Proc. Natl. Acad. Sci. USA, 2010, 107, 8452–8456 in Google Scholar

[43] Bostan A.C., Dum R.P., Strick P.L., Cerebellar networks with the cerebral cortex and basal ganglia, Trends Cogn. Sci., 2013, 17, 241–254 in Google Scholar

[44] Bostan A.C., Strick P.L., The cerebellum and basal ganglia are interconnected, Neuropsychol. Rev., 2010, 20, 261–270 in Google Scholar

[45] Teune T.M., van der Burg J., van der Moer J., Voogd J., Ruigrok T.J., Topography of cerebellar nuclear projections to the brain stem in the rat, Prog. Brain Res., 2000, 124, 141–172 in Google Scholar

[46] Perciavalle V., Apps R., Bracha V., Delgado-Garcia J.M., Gibson A.R., Leggio M., et al., Consensus paper: current views on the role of cerebellar interpositus nucleus in movement control and emotion, Cerebellum, 2013, 12, 738–757 in Google Scholar

[47] Bracha V., Kolb F.P., Irwin K.B., Bloedel J.R., Inactivation of interposed nuclei in the cat: classically conditioned withdrawal reflexes, voluntary limb movements and the action primitive hypothesis, Exp. Brain Res., 1999, 126, 77–92 in Google Scholar

[48] Martin J.H., Cooper S.E., Hacking A., Ghez C., Differential effects of deep cerebellar nuclei inactivation on reaching and adaptive control, J. Neurophysiol., 2000, 83, 1886–1899 10.1152/jn.2000.83.4.1886Search in Google Scholar

[49] Holstege G., Blok B.F., Ralston D.D., Anatomical evidence for red nucleus projections to motoneuronal cell groups in the spinal cord of the monkey, Neurosci. Lett., 1988, 95, 97–101 in Google Scholar

[50] Fujito Y., Aoki M., Monosynaptic rubrospinal projections to distal forelimb motoneurons in the cat, Exp. Brain Res., 1995, 105, 181–190 10.1007/BF00240954Search in Google Scholar

[51] Robinson F.R., Houk J.C., Gibson A.R., Limb specific connections of the cat magnocellular red nucleus, J. Comp. Neurol., 1987, 257, 553–577 in Google Scholar

[52] Gibson A.R., Horn K.M., Stein J.F., Van Kan P.L., Activity of interpositus neurons during a visually guided reach, Can. J. Physiol. Pharmacol., 1996, 74, 499–512 in Google Scholar

[53] Thach W.T., Goodkin H.P., Keating J.G., The cerebellum and the adaptive coordination of movement, Annu. Rev. Neurosci., 1992, 15, 403–442 in Google Scholar

[54] Mason C.R., Miller L.E., Baker J.F., Houk J.C., Organization of reaching and grasping movements in the primate cerebellar nuclei as revealed by focal muscimol inactivations, J. Neurophysiol., 1998, 79, 537–554 10.1152/jn.1998.79.2.537Search in Google Scholar

[55] Pong M., Horn K.M., Gibson A.R., Spinal projections of the cat parvicellular red nucleus, J. Neurophysiol., 2002, 87, 453–468 10.1152/jn.00950.2000Search in Google Scholar

[56] Morcuende S., Delgado-Garcia J.M., Ugolini G., Neuronal premotor networks involved in eyelid responses: retrograde transneuronal tracing with rabies virus from the orbicularis oculi muscle in the rat, J. Neurosci., 2002, 22, 8808–8818 10.1523/JNEUROSCI.22-20-08808.2002Search in Google Scholar

[57] Satoh Y., Yajima E., Ishizuka K., Nagamine Y., Iwasaki S., Modulation of two types of jaw-opening reflex by stimulation of the red nucleus, Brain Res. Bull., 2013, 97, 24–31 in Google Scholar

[58] Pierrot-Deseilligny E., Burke D., The circuitry of the human spinal cord. Its role in motor control and movement disorders, Cambridge University Press, Cambridge, UK, 2005 in Google Scholar

[59] Alstermark B., Lundberg A., Sasaki S., Integration in descending motor pathways controlling the forelimb in the cat. 11. Inhibitory pathways from higher motor centres and forelimb afferents to C3-C4 propriospinal neurones, Exp. Brain Res., 1984, 56, 293–307 in Google Scholar

[60] Alstermark B., Lundberg A., Sasaki S., Integration in descending motor pathways controlling the forelimb in the cat. 10. Inhibitory pathways to forelimb motoneurones via C3-C4 propriospinal neurones, Exp. Brain Res., 1984, 56, 279–292 in Google Scholar

[61] Alstermark B., Isa T., Circuits for skilled reaching and grasping, Annu. Rev. Neurosci., 2012, 35, 559–578 in Google Scholar

[62] Alstermark B., Gorska T., Johannisson T., Lundberg A., Hypermetria in forelimb target-reaching after interruption of the inhibitory pathway from forelimb afferents to C3-C4 propriospinal neurones, Neurosci. Res., 1986, 3, 457–461 in Google Scholar

[63] Iglesias C., Marchand-Pauvert V., Lourenco G., Burke D., Pierrot-Deseilligny E., Task-related changes in propriospinal excitation from hand muscles to human flexor carpi radialis motoneurones, J. Physiol., 2007, 582, 1361–1379 in Google Scholar

[64] Roberts L.V., Stinear C.M., Lewis G.N., Byblow W.D., Task-dependent modulation of propriospinal inputs to human shoulder, J. Neurophysiol., 2008, 100, 2109–2114 in Google Scholar

[65] Giboin L.S., Lackmy-Vallee A., Burke D., Marchand-Pauvert V., Enhanced propriospinal excitation from hand muscles to wrist flexors during reach-to-grasp in humans, J. Neurophysiol., 2012, 107, 532–543 in Google Scholar

[66] Lourenco G., Bleton J.P., Iglesias C., Vidailhet M., Marchand-Pauvert V., Abnormal spinal interactions from hand afferents to forearm muscles in writer’s cramp, Clin. Neurophysiol., 2007, 118, 2215–2226 in Google Scholar

[67] Marchand-Pauvert V., Iglesias C., Properties of human spinal interneurones: normal and dystonic control, J. Physiol., 2008, 586, 1247–1256 in Google Scholar

[68] Alstermark B., Isa T., Tantisira B., Projection from excitatory C3-C4 propriospinal neurones to spinocerebellar and spinoreticular neurones in the C6-Th1 segments of the cat, Neurosci. Res., 1990, 8, 124–130 in Google Scholar

[69] Alstermark B., Lindstrom S., Lundberg A., Sybirska E., Integration in descending motor pathways controlling the forelimb in the cat. 8. Ascending projection to the lateral reticular nucleus from C3-C4 propriospinal also projecting to forelimb motoneurones, Exp. Brain Res., 1981, 42, 282–298 in Google Scholar

[70] Bradnam L.V., Stinear C.M., Byblow W.D., Cathodal transcranial direct current stimulation suppresses ipsilateral projections to presumed propriospinal neurons of the proximal upper limb, J. Neurophysiol., 2011, 105, 2582–2589 in Google Scholar

[71] Bradnam L.V., Stinear C.M., Byblow W.D., Theta burst stimulation of human primary motor cortex degrades selective muscle activation in the ipsilateral arm, J. Neurophysiol., 2010, 104, 2594–2602 in Google Scholar

[72] Gerachshenko T., Stinear J.W., Suppression of motor evoked potentials in biceps brachii preceding pronator contraction, Exp. Brain Res., 2007, 183, 531–539 in Google Scholar

[73] McCambridge A.B., Bradnam L.V., Stinear C.M., Byblow W.D., Cathodal transcranial direct current stimulation of the primary motor cortex improves selective muscle activation in the ipsilateral arm, J. Neurophysiol., 2011, 105, 2937–2942 in Google Scholar

[74] Apps R., Movement-related gating of climbing fibre input to cerebellar cortical zones, Prog. Neurobiol., 1999, 57, 537–562 in Google Scholar

[75] Leggio M.G., Chiricozzi F.R., Clausi S., Tedesco A.M., Molinari M., The neuropsychological profile of cerebellar damage: the sequencing hypothesis, Cortex, 2011, 47, 137–144 in Google Scholar

[76] Galea J.M., Vazquez A., Pasricha N., de Xivry J.J., Celnik P., Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns, Cereb. Cortex, 2011, 21, 1761–1770 in Google Scholar

[77] Torriero S., Oliveri M., Koch G., Lo Gerfo E., Salerno S., Ferlazzo F., et al., Changes in cerebello-motor connectivity during procedural learning by actual execution and observation, J. Cogn. Neurosci., 2011, 23, 338–348 in Google Scholar

[78] Bernard J.A., Seidler R.D., Cerebellar contributions to visuomotor adaptation and motor sequence learning: an ALE meta-analysis, Front. Hum. Neurosci., 2013, 7, 27 10.3389/fnhum.2013.00027Search in Google Scholar

[79] Stamelou M., Edwards M.J., Hallett M., Bhatia K.P., The non-motor syndrome of primary dystonia: clinical and pathophysiological implications, Brain, 2012, 135, 1668–1681 in Google Scholar

[80] Wu T., Hallett M., The cerebellum in Parkinson’s disease, Brain, 2013, 136, 696–709 in Google Scholar

[81] Torriero S., Oliveri M., Koch G., Caltagirone C., Petrosini L., Interference of left and right cerebellar rTMS with procedural learning, J. Cogn. Neurosci., 2004, 16, 1605–1611 in Google Scholar

[82] Torriero S., Oliveri M., Koch G., Lo Gerfo E., Salerno S., Petrosini L., et al., Cortical networks of procedural learning: evidence from cerebellar damage, Neuropsychologia, 2007, 45, 1208–1214 in Google Scholar

[83] Ferrucci R., Brunoni A.R., Parazzini M., Vergari M., Rossi E., Fumagalli M., et al., Modulating human procedural learning by cerebellar transcranial direct current stimulation, Cerebellum, 2013, 12, 485–492 in Google Scholar

[84] Ferrucci R., Marceglia S., Vergari M., Cogiamanian F., Mrakic-Sposta S., Mameli F., et al., Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory, J. Cogn. Neurosci., 2008, 20, 1687–1697 in Google Scholar

[85] Boehringer A., Macher K., Dukart J., Villringer A., Pleger B., Cerebellar transcranial direct current stimulation modulates verbal working memory, Brain Stimul., 2013, 6, 649–653 in Google Scholar

[86] Pope P.A., Miall R.C., Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum, Brain Stimul., 2012, 5, 84–94 in Google Scholar

[87] Avanzino L., Martino D., Martino I., Pelosin E., Vicario C.M., Bove M., et al., Temporal expectation in focal hand dystonia, Brain, 2013, 136, 444–454 in Google Scholar

[88] Meunier S., Russmann H., Shamim E., Lamy J.C., Hallett M., Plasticity of cortical inhibition in dystonia is impaired after motor learning and paired-associative stimulation, Eur. J. Neurosci., 2012, 35, 975–986 in Google Scholar

[89] Belvisi D., Suppa A., Marsili L., Di Stasio F., Parvez A.K., Agostino R., et al., Abnormal experimentally- and behaviorally-induced LTP-like plasticity in focal hand dystonia, Exp. Neurol., 2013, 240, 64–74 in Google Scholar

[90] Hubsch C., Roze E., Popa T., Russo M., Balachandran A., Pradeep S., et al., Defective cerebellar control of cortical plasticity in writer’s cramp, Brain, 2013, 136, 2050–2062 in Google Scholar

[91] Fiorio M., Tinazzi M., Aglioti S.M., Selective impairment of hand mental rotation in patients with focal hand dystonia, Brain, 2006, 129, 47–54 in Google Scholar

[92] Fiorio M., Tinazzi M., Ionta S., Fiaschi A., Moretto G., Edwards M.J., et al., Mental rotation of body parts and non-corporeal objects in patients with idiopathic cervical dystonia, Neuropsychologia, 2007, 45, 2346–2354 in Google Scholar

[93] Stoodley C.J., Schmahmann J.D., Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing, Cortex, 2010, 46, 831–844 in Google Scholar

[94] Stoodley C.J., The cerebellum and cognition: evidence from functional imaging studies, Cerebellum, 2012, 11, 352–365 in Google Scholar

[95] Grimaldi G., Argyropoulos G.P., Boehringer A., Celnik P., Edwards M.J., Ferrucci R., et al., Non-invasive cerebellar stimulation — a consensus paper, Cerebellum, 2013, [Epub ahead of print], doi: 10.1007/s12311-013-0514-7 10.1007/s12311-013-0514-7Search in Google Scholar

[96] Bolognini N., Pascual-Leone A., Fregni F., Using non-invasive brain stimulation to augment motor training-induced plasticity, J. Neuroeng. Rehabil., 2009, 6, 8 in Google Scholar

[97] Monte-Silva K., Kuo M.F., Liebetanz D., Paulus W., Nitsche M.A., Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS), J. Neurophysiol., 2010, 103, 1735–1740 in Google Scholar

Published Online: 2013-12-20
Published in Print: 2013-12-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 30.3.2023 from
Scroll Up Arrow