Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 20, 2013

HMGB1 suppression confers neuroprotection against stroke in diabetic rats

  • Dohoung Kim EMAIL logo , In-Young Choi , Hyunduk Jang and Seung-Hoon Lee


[1] Ergul A., Li W., Elgebaly M.M., Bruno A., Fagan S.C., Hyperglycemia, diabetes and stroke: focus on the cerebrovasculature, Vascul. Pharmacol., 2009, 51, 44–49 in Google Scholar PubMed PubMed Central

[2] Luitse M.J., Biessels G.J., Rutten G.E., Kappelle L.J., Diabetes, hyperglycaemia, and acute ischaemic stroke, Lancet Neurol., 2012, 11, 261–271 in Google Scholar PubMed

[3] Uyttenboogaart M., Koch M.W., Stewart R.E., Broomen P.C., Luijckx G.J., De Keyser J., Moderate hyperglycaemia is associated with favourable outcome in acute lacunar stroke, Brain, 2007, 130, 1626–1630 in Google Scholar PubMed

[4] Capes S.E., Hunt D., Malmberg K., Pathak P., Gerstein H.C., Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview, Stroke, 2001, 32, 2426–2432 in Google Scholar PubMed

[5] MacDougall N.J., Muir K.W., Hyperglycaemia and infarct size in animal models of middle cerebral artery occlusion: systematic review and meta-analysis, J. Cereb. Blood Flow Metab., 2011, 31, 807–818 in Google Scholar PubMed PubMed Central

[6] Quast M.J., Wei J., Huang N.C., Brunder D.G., Sell S.L., Gonzales J.M., et al., Perfusion deficit parallels exacerbation of cerebral ischemia/reperfusion injury in hyperglycemic rats, J. Cereb. Blood Flow Metab., 1997, 17, 553–559 in Google Scholar PubMed

[7] Kawai N., Keep R.F., Betz A.L., Nagao S., Hyperglycemia induces progressive changes in the cerebral microvasculature and bloodbrain barrier transport during focal cerebral ischemia, Acta Neurochir. Suppl., 1998, 71, 219–221 10.1007/978-3-7091-6475-4_63Search in Google Scholar PubMed

[8] Nogueira-Machado J.A., Volpe C.M., Veloso C.A., Chaves M.M., HMGB1, TLR and RAGE: a functional tripod that leads to diabetic inflammation, Expert Opin. Ther. Targets, 2011, 15, 1023–1035 in Google Scholar PubMed

[9] Wang H., Bloom O., Zhang M., Vishnubhakat J.M., Ombrellino M., Che J., et al., HMG-1 as a late mediator of endotoxin lethality in mice, Science, 1999, 285, 248–251 in Google Scholar PubMed

[10] Urbonaviciute V., Fürnrohr B.G., Meister S., Munoz L., Heyder P., De Marchis F., et al., Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: Implications for the pathogenesis of SLE, J. Exp. Med., 2008, 205, 3007–3018 in Google Scholar PubMed PubMed Central

[11] Arase Y., Ikeda K., Murashima N., Chayama K., Tsubota A., Koida I., et al., The long term efficacy of glycyrrhizin in chronic hepatitis c patients, Cancer, 1997, 79, 1494–1500<1494::AID-CNCR8>3.0.CO;2-B10.1002/(SICI)1097-0142(19970415)79:8<1494::AID-CNCR8>3.0.CO;2-BSearch in Google Scholar

[12] Mollica L., De Marchis F., Spitaleri A., Dallacosta C., Pennacchini D., Zamai M., et al., Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities, Chem. Biol., 2007, 14, 431–441 in Google Scholar

[13] Kim C.K., Kim T., Choi I.Y., Soh M., Kim D., Kim Y.J., et al., Ceria nanoparticles that can protect against ischemic stroke, Angew. Chem. Int. Ed. Engl., 2012, 51, 11039–11043 in Google Scholar

[14] Wang Q., Tang X.N., Yenari M.A., The inflammatory response in stroke, J. Neuroimmunol., 2007, 184, 53–68 in Google Scholar

[15] Goldstein R.S., Gallowitsch-Puerta M., Yang L., Rosas-Ballina M., Huston J.M., Czura C.J., et al., Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia, Shock, 2006, 25, 571–574 in Google Scholar

[16] Huang J.M., Hu J., Chen N., Hu M.L., Relationship between plasma high-mobility group box-1 levels and clinical outcomes of ischemic stroke, J. Crit. Care, 2013, 28, 792–797 in Google Scholar

[17] Devaraj S., Dasu M.R., Park S.H., Jialal I., Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes, Diabetologia, 2009, 52, 1665–1668 in Google Scholar

[18] Goldin A., Beckman J.A., Schmidt A.M., Creager M.A., Advanced glycation end products: sparking the development of diabetic vascular injury, Circulation, 2006, 114, 597–605 in Google Scholar

[19] Tsuruta R., Fujita M., Ono T., Koda Y., Yamamoto T., Nanba M., et al., Hyperglycemia enhances excessive superoxide anion radical generation, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats, Brain Res., 2010, 1309, 155–163 in Google Scholar

[20] Dasu M.R., Devaraj S., Park S., Jialal I., Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects, Diabetes Care, 2010, 33, 861–868 in Google Scholar

[21] Yang Q.W., Lu F.L., Zhou Y., Wang L., Zhong Q., Lin S., et al., HMBG1 mediates ischemia-reperfusion injury by TRIF-adaptor independent Toll-like receptor 4 signaling, J. Cereb. Blood Flow Metab., 2011, 31, 593–605 in Google Scholar PubMed PubMed Central

[22] Andersson U., Tracey K.J., HMGB1 is a therapeutic target for sterile inflammation and infection, Annu. Rev. Immunol., 2011, 29, 139–162 in Google Scholar PubMed PubMed Central

[23] Hofmann M.A., Drury S., Fu C., Qu W., Taguchi A., Lu Y., et al., RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides, Cell, 1999, 97, 889–901 in Google Scholar

[24] Ishihara K., Tsutsumi K., Kawane S., Nakajima M., Kasaoka T., The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site, FEBS Lett., 2003, 550, 107–113 in Google Scholar PubMed

[25] Touré F., Zahm J.M., Garnotel R., Lambert E., Bonnet N., Schmidt A.M., et al., Receptor for advanced glycation end-products (RAGE) modulates neutrophil adhesion and migration on glycoxidated extracellular matrix, Biochem. J., 2008, 416, 255–261 in Google Scholar PubMed

[26] Li J., Schmidt A.M., Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products, J. Biol. Chem., 1997, 272, 16498–16506 in Google Scholar PubMed

[27] Kim J.B., Sig Choi J., Yu Y.M., Nam K., Piao C.S., Kim S.W., et al., HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain, J. Neurosci., 2006, 26, 6413–6421 in Google Scholar PubMed PubMed Central

[28] Muhammad S., Barakat W., Stoyanov S., Murikinati S., Yang H., Tracey K.J., et al., The HMGB1 receptor RAGE mediates ischemic brain damage, J. Neurosci., 2008, 28, 12023–12031 in Google Scholar PubMed PubMed Central

[29] Takii H., Kometani T., Nishimura T., Nakae T., Okada S., Fushiki T., Antidiabetic effect of glycyrrhizin in genetically diabetic KK-Ay mice, Biol. Pharm. Bull., 2001, 24, 484–487 in Google Scholar PubMed

[30] Sen S., Roy M., Chakraborti A.S., Ameliorative effects of glycyrrhizin on streptozotocin-induced diabetes in rats, J. Pharm. Pharmacol., 2011, 63, 287–296 in Google Scholar PubMed

Published Online: 2013-12-20
Published in Print: 2013-12-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.5.2023 from
Scroll to top button