Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 28, 2014

Brain-machine interfaces: an overview

  • Mikhail Lebedev EMAIL logo


Brain-machine interfaces (BMIs) hold promise to treat neurological disabilities by linking intact brain circuitry to assistive devices, such as limb prostheses, wheelchairs, artificial sensors, and computers. BMIs have experienced very rapid development in recent years, facilitated by advances in neural recordings, computer technologies and robots. BMIs are commonly classified into three types: sensory, motor and bidirectional, which subserve motor, sensory and sensorimotor functions, respectively. Additionally, cognitive BMIs have emerged in the domain of higher brain functions. BMIs are also classified as noninvasive or invasive according to the degree of their interference with the biological tissue. Although noninvasive BMIs are safe and easy to implement, their information bandwidth is limited. Invasive BMIs hold promise to improve the bandwidth by utilizing multichannel recordings from ensembles of brain neurons. BMIs have a broad range of clinical goals, as well as the goal to enhance normal brain functions.

[1] Lebedev M.A., Nicolelis M.A., Brain-machine interfaces: past, present and future, 2006, Trends Neurosci., 29, 536–546 in Google Scholar

[2] Nicolelis M.A., Lebedev M.A., Principles of neural ensemble physiology underlying the operation of brain-machine interfaces, Nat. Rev. Neurosci., 2009, 10, 530–540 in Google Scholar

[3] Schwartz A.B., Cui X.T., Weber D.J., Moran D.W., Brain-controlled interfaces: movement restoration with neural prosthetics, Neuron, 2006, 52, 205–220 in Google Scholar

[4] McFarland D.J., Krusienski D.J., Wolpaw J.R., Brain-computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms, Prog. Brain Res., 2006, 159, 411–419 in Google Scholar

[5] Hatsopoulos N.G., Donoghue J.P., The science of neural interface systems, Annu. Rev. Neurosci., 2009, 32, 249–266 in Google Scholar PubMed PubMed Central

[6] Carmena J.M., Lebedev M.A., Crist R.E., O’Doherty J.E., Santucci D.M., Dimitrov D.F., et al., PloS Biol., 2003, 1, E42 in Google Scholar PubMed PubMed Central

[7] Tangermann M., Krauledat M., Grzeska K., Sagebaum M., Blankertz B., Vidaurre C., et al., Playing pinball with non-invasive BCI, Adv. Neural Inf. Process. Syst., 2009, 21, 1641–1648 Search in Google Scholar

[8] Lin C.T., Chang C.J., Lin B.S., Hung S.H., Chao C.F., Wang I.J., A real-time wireless brain-computer interface system for drowsiness detection, IEEE Trans. Biomed. Circuits Syst., 2010, 4, 214–222 in Google Scholar PubMed

[9] Lilly J.C., Distribution of’ motor’ functions in the cerebral cortex in the conscious, intact monkey, Science, 1956, 124, 937 Search in Google Scholar

[10] Evarts E.V., Motor cortex reflexes associated with learned movement, Science, 1973, 179, 501–503 in Google Scholar PubMed

[11] O’Doherty J.E., Lebedev M.A., Ifft P.J., Zhuang K.Z., Shokur S., Bleuler H., et al., Active tactile exploration using a brain-machine-brain interface, Nature, 2011, 479, 228–231 in Google Scholar PubMed PubMed Central

[12] Shannon R.V., Advances in auditory prostheses, Curr. Opin. Neurol., 2012, 25, 61–66 in Google Scholar PubMed PubMed Central

[13] Wilson B.S., Dorman M.F., Cochlear implants: a remarkable past and a brilliant future, Hear. Res., 2008, 242, 3–21 in Google Scholar PubMed PubMed Central

[14] Farah M.J., Emerging ethical issues in neuroscience, Nat. Neurosci., 2002, 5, 1123–1129 in Google Scholar PubMed

[15] Vlek R.J., Steines D., Szibbo D., Kübler A., Schneider M.J., Haselager P., et al., Ethical issues in brain-computer interface research, development, and dissemination, J. Neurol. Phys. Ther., 2012, 36, 94–99 in Google Scholar PubMed

[16] Andersen R.A., Hwang E.J., Mulliken G.H., Cognitive neural prosthetics. Annu. Rev. Psychol., 2010, 61, 169–190 in Google Scholar PubMed PubMed Central

[17] Berger T.W., Ahuja A., Courellis S.H., Deadwyler S.A., Erinjippurath G., Gerhardt G.A., et al., IEEE Eng. Med. Biol. Mag., 2005, 24, 30–44 in Google Scholar

[18] Dennett D.C., Consciousness explained, Back Bay Books, New York, NY, USA, 1992 [This book contains a description of the pioneering demonstration of a brain-machine interface by Grey Walter] Search in Google Scholar

[19] Frank K., Some approaches to the technical problem of chronic excitation of peripheral nerve, Ann. Otol. Rhinol. Laryngol., 1968, 77, 761–771 10.1177/000348946807700414Search in Google Scholar PubMed

[20] Humphrey D.R., Schmidt E.M., Thompson W.D., Predicting measures of motor performance from multiple cortical spike trains, Science, 1970, 170, 758–762 in Google Scholar PubMed

[21] Schmidt E.M., Single neuron recording from motor cortex as a possible source of signals for control of external devices, Ann. Biomed. Eng., 1980, 8, 339–349 in Google Scholar PubMed

[22] Fetz E.E., Operant conditioning of cortical unit activity, Science, 1969, 163, 955–958 in Google Scholar PubMed

[23] Brindley G.S., Lewin W.S., The sensations produced by electrical stimulation of the visual cortex, J. Physiol., 1968, 196, 479–493 10.1113/jphysiol.1968.sp008519Search in Google Scholar PubMed PubMed Central

[24] Dobelle W.H., Mladejovsky M.G., Girvin J.P., Artifical vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis, Science, 1974, 183, 440–444 in Google Scholar PubMed

[25] Chapin J.K., Moxon K.A., Markowitz R.S., Nicolelis M.A., Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex, Nat. Neurosci., 1999, 2, 664–670 in Google Scholar PubMed

[26] Wessberg J., Stambaugh C.R., Kralik J.D., Beck P.D., Laubach M., Chapin J.K., et al., Real-time prediction of hand trajectory by ensembles of cortical neurons in primates, Nature, 2000, 408, 361–365 in Google Scholar PubMed

[27] Lebedev M.A., Carmena J.M., O’Doherty J.E., Zacksenhouse M., Henriquez C.S., Principe J.C., et al., Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brainmachine interface, J. Neurosci., 2005, 25, 4681–4693 in Google Scholar PubMed PubMed Central

[28] Fitzsimmons N.A., Lebedev M.A., Peikon I.D., Nicolelis M.A., Extracting kinematic parameters for monkey bipedal walking from cortical neuronal ensemble activity, Front. Integr. Neurosci., 2009, 3, 3 in Google Scholar PubMed PubMed Central

[29] Ifft P.J., Shokur S., Li Z., Lebedev M.A., Nicolelis M.A., A brain-machine interface enables bimanual arm movements in monkeys, Sci. Transl. Med., 2013, 5, 210ra154 in Google Scholar PubMed PubMed Central

[30] Kennedy P.R., Bakay RA., Restoration of neural output from a paralyzed patient by a direct brain connection, Neuroreport, 1998, 9, 1707–1711 in Google Scholar PubMed

[31] Hochberg L.R., Serruya M.D., Friehs G.M., Mukand J.A., Saleh M., Caplan A.H., et al., Neuronal ensemble control of prosthetic devices by a human with tetraplegia, Nature, 2006, 442, 164–171 in Google Scholar PubMed

[32] Hochberg L.R., Bacher D., Jarosiewicz B., Masse N.Y., Simeral J.D., Vogel J., et al., Reach and grasp by people with tetraplegia using a neurally controlled robotic arm, Nature, 2012, 485, 372–375 in Google Scholar PubMed PubMed Central

[33] Taylor D.M., Tillery S.I., Schwartz A.B., Direct cortical control of 3D neuroprosthetic devices, Science, 2002, 296, 1829–1832 in Google Scholar PubMed

[34] Velliste M., Perel S., Spalding M.C., Whitford A.S., Schwartz A.B., Cortical control of a prosthetic arm for self-feeding, Nature, 2008, 453, 1098–1101 in Google Scholar

[35] Collinger J.L., Wodlinger B., Downey J.E., Wang W., Tyler-Kabara E.C., Weber D.J., et al., High-performance neuroprosthetic control by an individual with tetraplegia, Lancet, 2013, 381, 557–564 in Google Scholar

[36] Mountcastle V.B., The sensory hand: neural mechanisms of somatic sensation, Harvard University Press, Cambridge, MA, USA, 2005 10.2307/j.ctv23dxd9kSearch in Google Scholar

[37] Hubel D.H., Wiesel T.N., Brain and visual perception: the story of a 25- year collaboration, Oxford University Press, Oxford, UK, 2005 10.1093/acprof:oso/9780195176186.003.0002Search in Google Scholar

[38] Wise S.P., The primate premotor cortex: past, present, and preparatory, Annu. Rev. Neurosci, 1985, 8, 1–19 in Google Scholar

[39] Kalaska J.F., Scott S.H., Cisek P., Sergio L.E., Cortical control of reaching movements, Curr. Opin. Neurobiol., 1997, 7, 849–859 in Google Scholar

[40] Georgopoulos A.P., Kalaska J.F., Caminiti R., Massey J.T., On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex, J. Neurosci., 1982, 2, 1527–1537 10.1523/JNEUROSCI.02-11-01527.1982Search in Google Scholar

[41] Georgopoulos A.P., Lurito J.T., Petrides M., Schwartz A.B., Massey J.T., Mental rotation of the neuronal population vector, Science, 1989, 243, 234–236 in Google Scholar PubMed

[42] Moritz C.T., Perlmutter S.I., Fetz E.E., Direct control of paralysed muscles by cortical neurons, Nature, 2008, 456, 639–642 in Google Scholar PubMed PubMed Central

[43] Quiroga R.Q., Reddy L., Kreiman G., Koch C., Fried I., Invariant visual representation by single neurons in the human brain, Nature, 2005, 435, 1102–1107 in Google Scholar PubMed

[44] Nicolelis M.A., Beyond boundaries: the new neuroscience of connecting brains with machines - and how it will change our lives, Times Books, New York, NY, USA, 2011 Search in Google Scholar

[45] Haykin S., Adaptive filter theory (4th Ed.), Prentice Hall, Upper Saddle River, New Jersey, 2001 Search in Google Scholar

[46] Li Z., O’Doherty J.E., Hanson T.L., Lebedev M.A., Henriquez C.S., Nicolelis M.A., Unscented Kalman filter for brain-machine interfaces, PLoS One, 2009, 4, e6243 in Google Scholar

[47] Sussillo D., Nuyujukian P., Fan J.M., Kao J.C., Stavisky S.D., Ryu S., et al., A recurrent neural network for closed-loop intracortical brainmachine interface decoders, J. Neural Eng., 2012, 9, 026027 in Google Scholar

[48] Birbaumer N., Ghanayim N., Hinterberger T., Iversen I., Kotchoubey B., Kübler A., et al., A spelling device for the paralysed, Nature, 1999, 398, 297–298 in Google Scholar

[49] Birbaumer N., Murguialday A.R., Cohen L., Brain-computer interface in paralysis, Curr. Opin. Neurol., 2008, 21, 634–638 in Google Scholar

[50] Sherrington C.S., The integrative action of the nervous system, Charles Scribner’s Sons, New York, NY, USA, 1906 Search in Google Scholar

[51] Guertin P.A., The mammalian central pattern generator for locomotion, Brain Res. Rev., 2009, 62, 45–56 in Google Scholar

[52] Cordo P.J., Gurfinkel V.S., Motor coordination can be fully understood only by studying complex movements, Prog. Brain Res., 2004, 143, 29–38 in Google Scholar

[53] Head H., Holmes G., Sensory disturbances from cerebral lesions, Brain, 1911, 34, 102–254 in Google Scholar

[54] Kawato M., Internal models for motor control and trajectory planning, Curr. Opin. Neurobiol., 1999, 9, 718–727 in Google Scholar

[55] Feldman A.G., Ostry D.J., Levin M.F., Gribble P.L., Mitnitski A.B., Recent tests of the equilibrium-point hypothesis (lambda model), Motor Control, 1998, 2, 189–205 10.1123/mcj.2.3.189Search in Google Scholar

[56] Pfurtscheller G., Müller G.R., Pfurtscheller J., Gerner H.J., Rupp R., ‘Thought’—control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia, Neurosci. Lett., 2003, 351, 33–36 in Google Scholar

[57] Ethier C., Oby E.R., Bauman M.J., Miller L.E., Restoration of grasp following paralysis through brain-controlled stimulation of muscles, Nature, 2012, 485, 368–371 in Google Scholar PubMed PubMed Central

[58] Pohlmeyer E.A., Oby E.R., Perreault E.J., Solla S.A., Kilgore K.L., Kirsch R.F., et al., Toward the restoration of hand use to a paralyzed monkey: brain-controlled functional electrical stimulation of forearm muscles, PLoS One, 2009, 4, e5924 in Google Scholar PubMed PubMed Central

[59] Cheron G., Duvinage M., De Saedeleer C., Castermans T., Bengoetxea A., Petieau M., et al., From spinal central pattern generators to cortical network: integrated BCI for walking rehabilitation, Neural Plast., 2012, 375148 10.1155/2012/375148Search in Google Scholar PubMed PubMed Central

[60] Presacco A., Forrester L.W., Contreras-Vidal J.L., Decoding intralimb and inter-limb kinematics during treadmill walking from scalp electroencephalographic (EEG) signals, IEEE Trans. Neural Syst. Rehabil. Eng., 2012, 20, 212–219 in Google Scholar PubMed PubMed Central

[61] Courtine G., Gerasimenko Y., van den Brand R., Yew A., Musienko P., Zhong H., et al., Transformation of nonfunctional spinal circuits into functional states after the loss of brain input, Nat. Neurosci., 2009, 12, 1333–1342 in Google Scholar PubMed PubMed Central

[62] Iriki A., Tanaka M., Iwamura Y., Coding of modified body schema during tool use by macaque postcentral neurones, Neuroreport, 1996, 7, 2325–2330 in Google Scholar PubMed

[63] Zacksenhouse M., Lebedev M.A., Carmena J.M., O’Doherty J.E., Henriquez C., Nicolelis M.A., Cortical modulations increase in early sessions with brain-machine interface, PLoS One, 2007, 2, e619 in Google Scholar PubMed PubMed Central

[64] Chase S.M., Kass R.E., Schwartz A.B., Behavioral and neural correlates of visuomotor adaptation observed through a brain-computer interface in primary motor cortex, J. Neurophysiol., 2012, 108, 624–644 in Google Scholar PubMed PubMed Central

[65] Galán F., Nuttin M., Lew E., Ferrez P.W., Vanacker G., Philips J., et al., A brain-actuated wheelchair: asynchronous and non-invasive brain-computer interfaces for continuous control of robots, Clin. Neurophysiol., 2008, 119, 2159–2169 in Google Scholar PubMed

[66] Muller-Putz G.R., Pfurtscheller G., Control of an electrical prosthesis with an SSVEP-based BCI, IEEE Trans. Biomed. Eng., 2008, 55, 361–364 in Google Scholar PubMed

[67] Nicolas-Alonso L.F., Gomez-Gil J., Brain computer interfaces, a review, Sensors (Basel), 2012, 12, 1211–1279 in Google Scholar

[68] Sellers E.W., Vaughan T.M., Wolpaw J.R., A brain-computer interface for long-term independent home use, Amyotroph. Lateral Scler., 2010, 11, 449–455 in Google Scholar

[69] Wolpaw J.R., McFarland D.J., Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans, Proc. Natl. Acad. Sci. USA, 2004, 101, 17849–17854 in Google Scholar

[70] Vialatte F.B., Maurice M., Dauwels J., Cichocki A., Steady-state visually evoked potentials: focus on essential paradigms and future perspectives, Prog. Neurobiol., 2010, 90, 418–438 in Google Scholar

[71] Farwell L.A., Donchin E., Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials, Electroencephalogr. Clin. Neurophysiol., 1988, 70, 510–523 in Google Scholar

[72] Millan J.R., Renkens F., Mouriño J., Gerstner W., Noninvasive brainactuated control of a mobile robot by human EEG, IEEE Trans. Biomed. Eng., 2004, 51, 1026–1033 in Google Scholar PubMed

[73] Tavella M., Leeb R., Rupp R., Millán J. del R., Towards natural noninvasive hand neuroprostheses for daily living, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2010, 126–129 10.1109/IEMBS.2010.5627178Search in Google Scholar PubMed

[74] Fatourechi M., Bashashati A., Ward R.K., Birch G.E., EMG and EOG artifacts in brain computer interface systems: a survey, Clin. Neurophysiol., 2007, 118, 480–494 in Google Scholar PubMed

[75] Mellinger J., Schalk G., Braun C., Preissl H., Rosenstiel W., Birbaumer N., et al., An MEG-based brain-computer interface (BCI), Neuroimage, 2007, 36, 581–593 in Google Scholar PubMed PubMed Central

[76] Sitaram R., Caria A., Birbaumer N., Hemodynamic brain-computer interfaces for communication and rehabilitation, Neural Netw., 2009, 22, 1320–1328 in Google Scholar PubMed

[77] Schott G.D., Penfield’s homunculus: a note on cerebral cartography, J. Neurol. Neurosurg. Psychiatry, 1993, 56, 329–333 in Google Scholar

[78] Barton J.J., Disorder of higher visual function, Curr. Opin. Neurol., 2011, 24, 1–5 in Google Scholar

[79] Romo R., Hernández A., Zainos A., Brody C.D., Lemus L., Sensing without touching: psychophysical performance based on cortical microstimulation, Neuron, 2000, 26, 273–278 in Google Scholar

[80] Fitzsimmons N.A., Drake W., Hanson T.L., Lebedev M.A., Nicolelis M.A., Primate reaching cued by multichannel spatiotemporal cortical microstimulation, J. Neurosci., 2007, 27, 5593–5602 in Google Scholar

[81] Zhang F., Aravanis A.M., Adamantidis A., de Lecea L., Deisseroth K., Circuit-breakers: optical technologies for probing neural signals and systems, Nat. Rev. Neurosci., 2007, 8, 577–581 in Google Scholar

[82] Jones L.A., Tactile communication systems optimizing the display of information, Prog. Brain Res., 2011, 192, 113–128 in Google Scholar

[83] Sampaio E., Maris S., Bach-y-Rita P., Brain plasticity:’ visual’ acuity of blind persons via the tongue, Brain Res., 2001, 908, 204–207 in Google Scholar

[84] Bach-y-Rita P., Kercel S., Sensory substitution and the humanmachine interface, Trends Cogn. Sci., 2003, 7, 541–546 in Google Scholar PubMed

[85] Fernandes R.A., Diniz B., Ribeiro R., Humayun M., Artificial vision through neuronal stimulation, Neurosci. Lett., 2012, 519, 122–128 in Google Scholar PubMed

[86] O’Doherty J.E., Lebedev M.A., Hanson T.L., Fitzsimmons N.A., Nicolelis M.A., A brain-machine interface instructed by direct intracortical microstimulation, Front. Integr. Neurosci., 2009, 3, 20 10.3389/neuro.07.020.2009Search in Google Scholar PubMed PubMed Central

[87] O’Doherty J.E., Lebedev M.A., Li Z., Nicolelis M.A., Virtual actual touch using randomly patterned intracortical microstimulation, IEEE Trans. Neural Syst. Rehabil. Eng., 2012, 20, 85–93 in Google Scholar PubMed PubMed Central

Published Online: 2014-3-28
Published in Print: 2014-3-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.9.2023 from
Scroll to top button