Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 28, 2013

Functional variable method to study nonlinear evolution equations

Mostafa Eslami EMAIL logo and Mohammad Mirzazadeh
From the journal Open Engineering

Abstract

The functional variable method is a powerful solution method for obtaining exact solutions of nonlinear evolution equations. This method presents a wider applicability for handling nonlinear wave equations. In this paper, the functional variable method is used to construct exact solutions of Davey-Stewartson equation, generalized Zakharov equation, K(m, n) equation with generalized evolution term, (2 + 1)-dimensional long-wave-short-wave resonance interaction equation and nonlinear Schrödinger equation with power law nonlinearity. The obtained solutions include solitary wave solutions, periodic wave solutions.

[1] Biswas A., Topological 1-soliton solution of the nonlinear Schrodinger’s equation with Kerr law nonlinearity in 1 + 2 dimensions, Commun. Nonlinear Sci. Numer. Simulat. 14 (2009) 2845–2847 http://dx.doi.org/10.1016/j.cnsns.2008.09.02510.1016/j.cnsns.2008.09.025Search in Google Scholar

[2] Ebadi G., Biswas A., The G 0/G method and topological soliton solution of the K(m,n) equation, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011) 2377–2382 http://dx.doi.org/10.1016/j.cnsns.2010.09.00910.1016/j.cnsns.2010.09.009Search in Google Scholar

[3] Biswas A., 1-Soliton solution of the K(m,n) equation with generalized evolution. Phys. Lett. A. 372(25) (2008) 4601–4602 http://dx.doi.org/10.1016/j.physleta.2008.05.00210.1016/j.physleta.2008.05.002Search in Google Scholar

[4] Biswas A., 1-Soliton solution of the K(m,n) equation with generalized evolution and time-dependent damping and dispersion. Comput. Math. Appl. 59(8) (2010) 2538–2542 http://dx.doi.org/10.1016/j.camwa.2010.01.01310.1016/j.camwa.2010.01.013Search in Google Scholar

[5] Ma W.X., Travelling wave solutions to a seventh order generalized KdV equation, Phys. Lett. A 180 (1993) 221–224 http://dx.doi.org/10.1016/0375-9601(93)90699-Z10.1016/0375-9601(93)90699-ZSearch in Google Scholar

[6] Malfliet W., Solitary wave solutions of nonlinear wave equations, Amer. J. Phys. 60(7) (1992) 650–654 http://dx.doi.org/10.1119/1.1712010.1119/1.17120Search in Google Scholar

[7] Ma W.X., Huang T.W., Zhang Y., A multiple expfunction method for nonlinear differential equations and its application, Phys. Scr. 82 (2010) 065003 http://dx.doi.org/10.1088/0031-8949/82/06/06500310.1088/0031-8949/82/06/065003Search in Google Scholar

[8] Wazwaz A.M., Multiple-soliton solutions for the Boussinesq equation, Appl. Math. Comput. 192 (2007) 479–486 http://dx.doi.org/10.1016/j.amc.2007.03.02310.1016/j.amc.2007.03.023Search in Google Scholar

[9] Wazwaz A.M., Multiple-soliton solutions for the Lax-Kadomtsev-Petvi sahvili (Lax-KP) equation. Appl. Math. Comput. 201 (2008) 168–174 http://dx.doi.org/10.1016/j.amc.2007.12.00910.1016/j.amc.2007.12.009Search in Google Scholar

[10] Wazwaz A.M., Multiple kink solutions and multiple singular kink solutions for (2+1)-dimensional nonlinear models generated by the Jaulent-Miodek hierarchy. Phys. Lett. A, 373 (2008) 1844–1846 http://dx.doi.org/10.1016/j.physleta.2009.03.04910.1016/j.physleta.2009.03.049Search in Google Scholar

[11] Wazwaz A.M., A study on two extensions of the Bogoyavlenskii-Schieff equation. Commun. Nonlin. Sci. Numer. Simul. 17(4)(2012) 1500–1505 http://dx.doi.org/10.1016/j.cnsns.2011.08.02710.1016/j.cnsns.2011.08.027Search in Google Scholar

[12] Hirota R., Exact solution of the Korteweg-de Vries equation for multiple collision of solitons, Phys. Rev. Lett. 27 (1971) 1192–1194 http://dx.doi.org/10.1103/PhysRevLett.27.119210.1103/PhysRevLett.27.1192Search in Google Scholar

[13] Hirota R., The Direct Method in Soliton Theory, Cambridge University Press, 2004 http://dx.doi.org/10.1017/CBO978051154304310.1017/CBO9780511543043Search in Google Scholar

[14] Ma W.X., Lee J.-H., A transformed rational function method and exact solutions to the (3 + 1)-dimensional Jimbo-Miwa equation, Chaos Solitons Fract. 42 (2009) 1356–1363 http://dx.doi.org/10.1016/j.chaos.2009.03.04310.1016/j.chaos.2009.03.043Search in Google Scholar

[15] Zerarka A., Ouamane S., Attaf A., On the functional variable method for finding exact solutions to a class of wave equations, Appl. Math. and Comput. 217 (2010) 2897–2904 http://dx.doi.org/10.1016/j.amc.2010.08.07010.1016/j.amc.2010.08.070Search in Google Scholar

[16] Zerarka A., Ouamane S., Application of the functional variable method to a class of nonlinear wave equations, World Journal of Modelling and Simulation, 6(2) (2010) 150–160 Search in Google Scholar

[17] Cevikel A.C., Bekir A., Akar M. and San S., A procedure to construct exact solutions of nonlinear evolution equations, Pramana — Journal of Physics, 79(3) (2012) 337–344 http://dx.doi.org/10.1007/s12043-012-0326-110.1007/s12043-012-0326-1Search in Google Scholar

[18] Zhou Y., Wang M., Miao T., The periodic wave solutions and solitary for a class of nonlinear partial differential equations, Phys. Lett. A 323 (2004) 77–88 http://dx.doi.org/10.1016/j.physleta.2004.01.05610.1016/j.physleta.2004.01.056Search in Google Scholar

[19] Lai Derek W.C., Chow Kwok W., ‘Positon’ and ‘Dromion’ solutions of the (2 + 1)-dimensional long wave-short wave resonance interaction equations, J. Phys. Soc. Jpn. 68 (1999) 1847–1853 http://dx.doi.org/10.1143/JPSJ.68.184710.1143/JPSJ.68.1847Search in Google Scholar

[20] Wazwaz A-M., Reliable analysis for nonlinear Schrödinger equations with a cubic nonlinearity and a power law nonlinearity, Math. Comput. Model. 43 (2006) 178–184 http://dx.doi.org/10.1016/j.mcm.2005.06.01310.1016/j.mcm.2005.06.013Search in Google Scholar

[21] Ablowitz M., Segur H., Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981 http://dx.doi.org/10.1137/1.978161197088310.1137/1.9781611970883Search in Google Scholar

[22] Drazin P.G., Johnson R.S., Solitons: An Introduction, Cambridge, New York, 1993 Search in Google Scholar

[23] Hirota R., Direct Methods in Soliton Theory, Springer, Berlin, 1980 10.1007/978-3-642-81448-8_5Search in Google Scholar

[24] Lax P.D., Periodic solutions of the Korteweg-de Vries equation, Comm. Pure. Appl. Math. 28 (1975) 141–188 http://dx.doi.org/10.1002/cpa.316028010510.1002/cpa.3160280105Search in Google Scholar

[25] Ebadi G., Biswas A., the G 0/G method and 1-soliton solution of the Davey-Sterwartson equation, Math. Comput. Modell. 53(5–6) (2011) 694–698 http://dx.doi.org/10.1016/j.mcm.2010.10.00510.1016/j.mcm.2010.10.005Search in Google Scholar

[26] Ebadi G., Krishnan E.V., Labidi M., Zerrad E., Biswas A., Analytical and numerical solutions for Davey-Stewartson equation with power law nonlinearity, Waves in Random and Complex Media, 21(4) (2011) 559–590 http://dx.doi.org/10.1080/17455030.2011.60685310.1080/17455030.2011.606853Search in Google Scholar

[27] Jafari H., Sooraki A., Talebi Y., Anjan Biswas, The first integral method and traveling wave solutions to Davey-Stewartson equation, Nonlinear Analysis: Modelling and Control, 17(2) (2012) 182–193 Search in Google Scholar

[28] Labidi M., Triki H., Krishnan E.V., Biswas A., Soliton solutions of the long-short wave equations with power law nonlinearity, Journal of Applied Nonlinear Dynamics, 1(2) (2012) 125–140 10.5890/JAND.2012.05.002Search in Google Scholar

[29] Sarma A.K., Saha M., Anjan Biswas, Optical solitons with power law nonlinearity and Hamiltonian perturbations: An exact solution, Journal of Infrared, Millimeter and Terahertz Waves, 31(9) (2010) 1048–1056 http://dx.doi.org/10.1007/s10762-010-9673-510.1007/s10762-010-9673-5Search in Google Scholar

Published Online: 2013-7-28
Published in Print: 2013-9-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 31.1.2023 from https://www.degruyter.com/document/doi/10.2478/s13531-013-0104-y/html
Scroll Up Arrow