Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 16, 2013

Analysis of soil boundary conditions of flash floods in a small basin in SW Hungary

  • Péter Hegedüs EMAIL logo , Szabolcs Czigány , László Balatonyi and Ervin Pirkhoffer
From the journal Open Geosciences

Abstract

Flash floods are one of the most significant natural hazards of today. Due to the complexity of flash flood triggering factors, to prevent or mitigate flood triggered losses, numeric model based flood forecasting models are capable tools to predict stream water levels. The main goal of the current research was to reproduce two flow peaks with the HEC-HMS rainfall-runoff model and test the model sensitivity for various input parameters. To obtain sufficient input data, we monitored soil depth, maximum infiltration rate, soil moisture content, rainfall, time of concentration and flow. To obtain input data, parameters were calculated, measured in the Sás Valley experimental watershed (SW Hungary) or optimized with the built in function of the HEC-HMS. Soil moisture was monitored in the 1.7 km2 pilot catchment over the period between September 2008 and September 2009. HEC-HMS had a good performance reproducing the two events, however simulated flow time series are highly influenced by the antecedent soil moisture, infiltration rate and canopy storage. Outflow modeled data were verified for two flood events (June 4, 2008 and July 9, 2009). The HEC-HMS was over-sensitive for input soil moisture and with increasing input rainfall and increasing outflow, larger simulation errors were observed.

[1] Marchi L., Borga M., Preciso E., Gaume E., Characterization of selected extreme flash floods in Europe and implications for flood risk management. J. Hydrol., 2010, 394, 118–133 http://dx.doi.org/10.1016/j.jhydrol.2010.07.01710.1016/j.jhydrol.2010.07.017Search in Google Scholar

[2] Sharif H.O., Yates D., Roberts R., Mueller C., The Use of an Automated Nowcasting System to Forecast Flash Floods in an Urban Watershed. J. Hydrometeor., 2006, 7, 190–202 http://dx.doi.org/10.1175/JHM482.110.1175/JHM482.1Search in Google Scholar

[3] Warner T.T., Yates D.N., Leavesley G.H., A Community Hydrometeorology Laboratory for Fostering Collaborative Research by the Atmospheric and Hydrologic Sciences. Bulletin of the American Meteorological Society, 2000, 81, 1499–1505 http://dx.doi.org/10.1175/1520-0477(2000)081<1499:ACHLFF>2.3.CO;210.1175/1520-0477(2000)081<1499:ACHLFF>2.3.CO;2Search in Google Scholar

[4] Yates D.N., Warner T.T., Leavesley G.H., Prediction of a Flash Flood in Complex Terrain. Part II.: A Comparsion of Flood Discharge Simulation Using Rainfall Input from Radar, a Dynamic Model, and an Automated Algorithmic System. J. Appl.Meteor. 2000, 39, 815–825 http://dx.doi.org/10.1175/1520-0450(2000)039<0815:POAFFI>2.0.CO;210.1175/1520-0450(2000)039<0815:POAFFI>2.0.CO;2Search in Google Scholar

[5] Bathurst J.C. Iroumé A. Cisneros F. Falls J. Itturaspe R. Novillo M.G., Urciuolo A., de Biévre B., Borges V.G., Coello C., Cisneros P., Gayoso J. Miranda M. and Ramírez M., Forest impact on floods due to extreme rainfall and snowmelt in four Latin American environments 1: Field data analysis J. Hydrol. 2011, 400, 281–291 http://dx.doi.org/10.1016/j.jhydrol.2010.11.04410.1016/j.jhydrol.2010.11.044Search in Google Scholar

[6] Pirkhoffer E., Czigány S., Geresdi I., Impact of rainfall pattern on the occurrence of flash floods in Hungary Z. Geomorph. N.F. 2009, 53, 139–157 http://dx.doi.org/10.1127/0372-8854/2009/0053S3-013910.1127/0372-8854/2009/0053S3-0139Search in Google Scholar

[7] Szlávik L. Tóth S. Nagy L., Szél S., Árvízi kockázatok elemzésének és térképezésének irányelvei. (Principles of flood risk assessment and analyses). Vízügyi Közlemények 2002, 84, 489–520 (In Hungarian) Search in Google Scholar

[8] Pirkhoffer E., Czigány S., Geresdi I., Modeling of flash flood events in a small low-mountain watershed in SW Hungary. Joined 2nd MAP D-PHASE Scientific Meeting & COST 731 Mid-term Seminar. Bologna, 2008, 139–145 Search in Google Scholar

[9] Grunfest E., Ripps A., Flash Floods. Warning and mitigation efforts and prospects, In: Parker D. J. (Ed.): Floods vol. I., Routledge, London-New York, 2005, 377–390 Search in Google Scholar

[10] Gaume E., Bain W., Bernardara P., Newinger O., Barbuc M., Bateman A., Blaskovicova L., Blochl G., Borga M., Dumitrescu A., Daliakopoulos I., Garcia J., Irimescu A., Kohnova S., Koutroulis A., Marchi L., Matreata S., Medina V., Preciso E., Sempere-Torres D., Stancalie G., Szolgay J., Tsanis I., Velascom D., Viglione A., A compilation of data on European flash floods. J. Hydrol., 2009, 367, 70–78 ISSN 0022-1694 http://dx.doi.org/10.1016/j.jhydrol.2008.12.02810.1016/j.jhydrol.2008.12.028Search in Google Scholar

[11] Borga M., Anagnostou E.N., Blöschl G. & Creutin J.-D., Flash flood forecasting, warning and risk management: The HYDRATE project. Environmental Science & Policy, 2011, 14, 834–844 http://dx.doi.org/10.1016/j.envsci.2011.05.01710.1016/j.envsci.2011.05.017Search in Google Scholar

[12] Horváth Á., A 2005. április 18-i mátrakeresztesi árvíz meteorológiai háttere. (Meteorological background of the Mátrakeresztes flash flood on April 18, 2005). Légkör, 2005, 50, 6–10 (In Hungarian) Search in Google Scholar

[13] Warburton M.L., Schulze R.E., Jewitt G.P.V., Hydrological impacts of land use change in three diverse South African Catchment. J. Hydrol., 2012, 414–415, 118–135 http://dx.doi.org/10.1016/j.jhydrol.2011.10.02810.1016/j.jhydrol.2011.10.028Search in Google Scholar

[14] Le Lay M., Saulnier G.M., Exploring the signature of climate-landscape spatial variabilities in flash flood events: Case of the 8–9 September 2002 Cevennes-Vivarais catastrophic event. Geophysical Research Letters, 2007, 34, 13 10.1029/2007GL029746Search in Google Scholar

[15] Oeckenden M.C., Chappell N.A., Identification of the dominant runoff pathways from data-based mechanistic modelling of nested catchments in temperate UK. J. Hydrol., 2011, 402, 71–79 http://dx.doi.org/10.1016/j.jhydrol.2011.03.00110.1016/j.jhydrol.2011.03.001Search in Google Scholar

[16] Veress M., Németh I., Schlaffer R. The effects of intensive rainfalls (flash floods) on the development on the landforms in the Koszeg Mountains (Hungary). Central European Journal of Geosciences, 2012, 4, 47–66 http://dx.doi.org/10.2478/s13533-011-0061-z10.2478/s13533-011-0061-zSearch in Google Scholar

[17] Elekes T., Gyenizse P., Nagyváradi L., Relation between forests and settlements in the catchment area of River Feernik. Studia Universitatis Babes-Bolyai Studia Ambientum, 2008, 23, 81–87 Search in Google Scholar

[18] Hinman C., Low impact development. Technical guidance manual for Puget Sound. Washington State University, Puyallup, WA, 2005 Search in Google Scholar

[19] US Army Corps of Engineers, Hydrologic Modeling System HEC-HMS. User’s Manual Version 3.4., 2009 Search in Google Scholar

[20] Czigány S., Pirkhoffer E., Geresdi I., Environmental impacts of flash floods in Hungary. In: P. Samuels, S. Huntington, W. Allsop & J. Harrop (Eds.) Flood Risk Management: Research and Practice, Taylor and Francis Group, London, 2009, 1439–1447 Search in Google Scholar

[21] Vass P., Árvizek a Bükkösdi-patak felso szakaszán (Floods in the headwaters of the Bükkösd Stream) In: Tésits R. & Tóth J. (Eds.), Földrajzi tanulmányok a pécsi doktoriskolából I., Pécs, 1997 (In Hungarian) Search in Google Scholar

[22] Eszéky O., A Bükkösdi-víz felso vízgyujtojén tervezheto árvíztároló hidrológiai tanulmányterve. (Hydrologic study plan of the flood mitigation pool in the upper catchment of the Bükkösd Stream) Pécs, 1987, (In Hungarian) Search in Google Scholar

[23] Eszéky O., A Bükkösdi-víz vízhozamnyílvántartó állomásainak felülvizsgálata. (Overview of the stream gauges in the watershed of the Bükkösdi-víz) Pécs, 1992 (In Hungarian) Search in Google Scholar

[24] Gyenizse P., Vass P., A természeti környezet szerepe a Nyugat-Mecsek településeinek kialakulásában és fejlodésében. (Role of physical environment on the development in the settlements of the Western-Mecsek Hills) Földrajzi Értesíto 1998, 47, 131–148 (In Hungarian with English summary) Search in Google Scholar

[25] Georgakakos K.P., Analytical research for operational flash flood guidance. J. Hydrol., 2006, 317, 81–103 http://dx.doi.org/10.1016/j.jhydrol.2005.05.00910.1016/j.jhydrol.2005.05.009Search in Google Scholar

[26] Hillel D., Environmental Soil Physics. Academic Press, San Diego, 1998 Search in Google Scholar

[27] Flint A.L., Flint L.A., Particle density. In: Dane J.H. & Topp G.C. (Eds.), Methods of Soil Analysis Part 4. Physical Methods. Soil Science Society of America Inc, Madison, 2002 Search in Google Scholar

[28] Straub, T.D., Melching, C.S., and K.E. Kocher, 2000. Equations for estimating Clark unithydrograph parameters for small rural watersheds in Illinois. Water-Resources Investigations Report 00-4184, USGS Search in Google Scholar

[29] Vachaud, G., A. Passerat De Silans, P. Balabanis, and M. Vauclin. Temporal stability of spatially measured soil water probability density function. Soil Sci. Soc. Am. J., 1985 49:822–828. http://dx.doi.org/10.2136/sssaj1985.03615995004900040006x10.2136/sssaj1985.03615995004900040006xSearch in Google Scholar

[30] Martinez F., Casermeiro M.A., Morales D., Cuevas G., Walter I., Effects on run-off water quantity and quality of urban organic wastes applied in a degraded semiarid ecosystem. The Science of the Total Environment, 2003, 305, 13–21. http://dx.doi.org/10.1016/S0048-9697(02)00472-210.1016/S0048-9697(02)00472-2Search in Google Scholar

[31] Penna D., Borga M., Norbiato D., Fontana G.D., Hillslope scale soil moisture variability in a steep alpine terrain. J.Hydrol., 2009, 364, 311–327 http://dx.doi.org/10.1016/j.jhydrol.2008.11.00910.1016/j.jhydrol.2008.11.009Search in Google Scholar

[32] Brocca L., Melone F., Moramarco T., Morbidelli R., Spatio-temporal variability of soil moisture and its estimation across scales. Water Resources Research, 46, W02516 10.1029/2009WR008016Search in Google Scholar

[33] Garcia A., Sainz A., Revilla J.A., Alvarez C, Juanes J.A., Puente A., Surface water resources assessment in a scarcely gauged basins int he north of Spain. J. Hydrol. 356, 312–326. 10.1016/j.jhydrol.2008.04.019Search in Google Scholar

[34] Zehe E., Becker R., Bárdossy A., Plate E., Uncertainty of simulated catchment runoff response in the presence of threshold processes: Role of initial soil moisture and precipitation. J. Hydrol., 2005, 315, 183–202 http://dx.doi.org/10.1016/j.jhydrol.2005.03.03810.1016/j.jhydrol.2005.03.038Search in Google Scholar

[35] Markus M., Angel J.R., Yang L., Hejazi M.I., Changing estimates of design precipitation in Northeastern Illinois: Comparison between different sources and sensitivity analysis. J.Hydrol., 347, 211–222 10.1016/j.jhydrol.2007.09.024Search in Google Scholar

[36] Knebl M.R., Yang Z.-L., Hutchison K., Maidment D.R., Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event. J. Environ. Man., 2005, 75, 325–336 http://dx.doi.org/10.1016/j.jenvman.2004.11.02410.1016/j.jenvman.2004.11.024Search in Google Scholar PubMed

[37] Czigány S., Pirkhoffer E., Geresdi I., Impact of extreme rainfall and soil moisture on flash flood generation. Idojárás, 2010, 114, 79–100 Search in Google Scholar

Published Online: 2013-3-16
Published in Print: 2013-3-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s13533-012-0119-6/html
Scroll to top button