Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 29, 2014

Influence of the spatial resolution of satellite-derived vegetation parameters on the biogenic Volatile Organic Compounds (VOC) emission modeling

  • Carlos Silveira EMAIL logo and Oxana Tchepel
From the journal Open Geosciences


Vegetation is a natural source of Volatile Organic Compounds (VOC) that plays an important role in atmospheric chemistry. The main objective of the current study is to implement a model to quantify process-based VOC emissions from plants that focuses on the relationship between the sensitivity of VOC emission estimates to spatial resolution data, based on scientific knowledge and vegetation dynamics derived from satellite observations. The Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) were elected to examine this issue using different resolutions of satellite-derived products: 22m from the DEIMOS-1 satellite, and 250m and 1000m provided by MODIS. The study is focused on an area of 80×80km2 in Portugal for 2011. Detailed land cover and meteorological data are also included in the emission quantification algorithm. The primary outcomes were determined using a multi-scale analysis showing spatial and temporal variations in the vegetation parameters and modeling results. The results confirm that the emissions model is highly sensitive to the spatial resolution of the satellite-derived data, resulting in about a 30% difference in total isoprene emissions for the study area.

[1] Griffin R.J., Cocker D.R., Seinfeld J.H., Dabdub D., Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons. Geophys. Res. Lett., 1999, 26, 2721–2724, DOI: 10.1029/1999GL900476 in Google Scholar

[2] Kanakidou M., Seinfeld J.H., Pandis S.N., Barnes I., Dentener F.J., Facchini M.C., et al., Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys., 2005, 5, 1053–1123, DOI: 10.5194/acp-5-1053-2005 in Google Scholar

[3] Curci G., Beekmann M., Vautard R., Smiatek G., Steinbrecher R., Theloke J., et al., Modelling study of the impact of isoprene and terpene biogenic emissions on European ozone levels. Atmos. Environ., 2009, 43(7), 1444–1455, DOI: 10.1016/j.atmosenv.2008.02.070 in Google Scholar

[4] Guenther A., Hewitt C.N., Erickson D., Fall R., Geron C., Graedel T., et al., A global model of natural volatile organic compound emissions. J. Geophys. Res-Atmos., 1995, 100(D5), 8873–8892, DOI: 10.1029/94JD02950 in Google Scholar

[5] Pacifico F., Harrison S.P., Jones C.D., Sitch S., Isoprene emissions and climate (review). Atmos. Environ., 2009, 43, 6121–6135, DOI: 10.1016/j.atmosenv.2009.09.002 in Google Scholar

[6] [6]Arneth A., Niinemets Ü, Pressley S., Bäck J., Hari P., Karl T., et al., Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction. Atmos. Chem. Phys., 2007, 7, 31–53, DOI: 10.5194/acp-7-31-2007 in Google Scholar

[7] Wilkinson M.J., Monson R.K., Trahan N., Lee S., Brown E., Jackson R.B., et al., Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Glob. Change Biol., 2009, 15, 1189–1200, DOI: 10.1111/j.1365-2486.2008.01803.x in Google Scholar

[8] Niinemets Ü, Tenhunen J.D., Harley P.C., Steinbrecher R., A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant Cell Environ., 1999, 22, 1319–1335, DOI: 10.1046/j.1365-3040.1999.00505.x in Google Scholar

[9] Guenther A., Karl T., Harley P., Wiedinmyer C., Palmer P.I., Geron C., Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 2006, 6, 3181–3210, DOI: 10.5194/acp-6-3181-2006 in Google Scholar

[10] Palmer P.I., Jacob D.J., Fiore A.M., Martin R.V., Chance K., Kurosu T.P., Mapping isoprene emissions over North America using formaldehyde column observations from space. J. Geophys. Res-Atmos., 2003, 108(D6), 27, DOI: 10.1029/2002JD002153 in Google Scholar

[11] Abbot D.S., Palmer P.I., Martin R.V., Chance K.V., Jacob D.J., Guenther A., Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space. Geophys. Res. Lett., 2003, 30(17), 4 pp, DOI: 10.1029/2003GL017336 10.1029/2003GL017336Search in Google Scholar

[12] Cheng Y., Gamon J.A., Fuentes D.A., Mao Z., Sims D.A., Qiu H., et al., A multi-scale analysis of dynamic optical signals in a Southern California chaparral ecosystem: A comparison of field, AVIRIS and MODIS data. Remote Sens. Environ., 2006, 103, 369–378, DOI: 10.1016/j.rse.2005.06.013 in Google Scholar

[13] Tarnavsky E., Garrigues S., Brown M.E., Multiscale geostatistical analysis of AVHRR, SPOTVGT, and MODIS global NDVI products. Remote Sens. Environ., 2008, 112(2), 535–549, DOI: 10.1016/j.rse.2007.05.008 in Google Scholar

[14] Tian Y., Woodcock C.E., Wang Y., Privette J.L., Shabanov N.V., Zhou L., et al., Multiscale analysis and validation of the MODIS LAI product. I. Uncertainty assessment. Remote Sens. Environ., 2002, 83, 414–430, DOI: 10.1016/S0034-4257(02)00047-0 in Google Scholar

[15] Garrigues S., Lacaze R., Baret F., Morisette J.T., Weiss M., Nickeson J.E., et al., Validation and intercomparison of global Leaf Area Index products derived from remote sensing data. J. Geophys. Res-Biogeo., 2008, 113(G2), 20 pp., DOI: 10.1029/2007JG000635 10.1029/2007JG000635Search in Google Scholar

[16] Kim J., Guo Q., Baldocchi D.D., Leclerc M.Y., Xu L., Schmid H.P., Upscaling fluxes from tower to landscape: Overlaying flux footprints on highresolution (IKONOS) images of vegetation cover. Agr. Forest Meteorol., 2006, 136, 132–146, DOI: 10.1016/j.agrformet.2004.11.015 in Google Scholar

[17] Knyazikhin Y., Glassy J., Privette J.L., Tian Y., Lotsch A., Zhang Y., et al., MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product. (MOD15). Algorithm Theoretical Basis Document, 1999, 126 pp. Search in Google Scholar

[18] Simpson D., Guenther A., Hewitt C.N., Steinbrecher R., Biogenic emissions in Europe: 1. Estimates and uncertainties. J. Geophys. Res-Atmos., 1995, 100(D11), 22875–22890, DOI: 10.1029/95JD02368 in Google Scholar

[19] Oderbolz D.C., Aksoyoglu S., Keller J., Barmpadimos I., Steinbrecher R., Skj?th C.A., et al., A comprehensive emission inventory of biogenic volatile organic compounds in Europe: improved seasonality and land-cover. Atmos. Chem. Phys., 2013, 13, 1689–1712, DOI: 10.5194/acp-13-1689-2013 in Google Scholar

[20] Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Duda M., Huang X-Y., Wang W., Powers J.G., A Description of the Advanced Research WRF Version 3. NCAR Technical Note, 2008, 113 pp., DOI: 10.5065/D68S4MVH Search in Google Scholar

[21] Kogan F., Global Drought Watch from Space. B. Am. Meteorol. Soc., 1997, 78(4), 621–636, DOI: 10.1175/1520-0477(1997)078¡0621:GDWFS¿2.0.CO;2<0621:GDWFS>2.0.CO;210.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO;2Search in Google Scholar

[22] Aardenne J.v., Pulles, T., Uncertainty in emission inventories: What do we mean and how could we assess it? 11th International Emission Inventory Conference — “Emission Inventories — Partnering for the Future”, April 15–18, 2002, Atlanta, GA. Search in Google Scholar

Published Online: 2014-5-29
Published in Print: 2014-3-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.11.2023 from
Scroll to top button