Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 29, 2014

Detection and mapping of burnt areas from time series of MODIS-derived NDVI data in a Mediterranean region

  • Miguel García EMAIL logo , José Alloza , Ángeles Mayor , Susana Bautista and Francisco Rodríguez
From the journal Open Geosciences

Abstract

Moderate resolution remote sensing data, as provided by MODIS, can be used to detect and map active or past wildfires from daily records of suitable combinations of reflectance bands. The objective of the present work was to develop and test simple algorithms and variations for automatic or semiautomatic detection of burnt areas from time series data of MODIS biweekly vegetation indices for a Mediterranean region. MODIS-derived NDVI 250m time series data for the Valencia region, East Spain, were subjected to a two-step process for the detection of candidate burnt areas, and the results compared with available fire event records from the Valencia Regional Government. For each pixel and date in the data series, a model was fitted to both the previous and posterior time series data. Combining drops between two consecutive points and 1-year average drops, we used discrepancies or jumps between the pre and post models to identify seed pixels, and then delimitated fire scars for each potential wildfire using an extension algorithm from the seed pixels. The resulting maps of the detected burnt areas showed a very good agreement with the perimeters registered in the database of fire records used as reference. Overall accuracies and indices of agreement were very high, and omission and commission errors were similar or lower than in previous studies that used automatic or semiautomatic fire scar detection based on remote sensing. This supports the effectiveness of the method for detecting and mapping burnt areas in the Mediterranean region.

[1] Keeley J.E., Bond W. J., Bradstock R.A., Pausas J.G., Rundel, P.W., Fire in Mediterranean Ecosystems. Ecology, Evolution and Management. Cambridge University Press, Cambridge, 2011 http://dx.doi.org/10.1017/CBO978113903309110.1017/CBO9781139033091Search in Google Scholar

[2] Pausas J.G., Verdu M., Plant persistence traits in fireprone ecosystems of the Mediterranean basin: a phylogenetic approach. Oikos, 2005, 109, 196–202 http://dx.doi.org/10.1111/j.0030-1299.2005.13596.x10.1111/j.0030-1299.2005.13596.xSearch in Google Scholar

[3] Bond W. J., Woodward F-I., Midgley G.F. The global distribution of ecosystems in a world without fire. New Phytol., 2005, 165, 525–538 http://dx.doi.org/10.1111/j.1469-8137.2004.01252.x10.1111/j.1469-8137.2004.01252.xSearch in Google Scholar PubMed

[4] Santana V.M., Baeza M.J., Marrs R.H., Vallejo V.R., Old-field secondary succession in SE Spain: can fire divert it?. Plant Ecol., 2010, 211, 337–349 http://dx.doi.org/10.1007/s11258-010-9793-y10.1007/s11258-010-9793-ySearch in Google Scholar

[5] Pausas J.G., The response of plant functional types to changes in the fire regime in Mediterranean ecosystems. A simulation approach. J. Veg. Sci., 1999, 10, 717–722 http://dx.doi.org/10.2307/323708610.2307/3237086Search in Google Scholar

[6] Moreira F., Viedma O., Arianoutsou M., Curt T., Koutsias N., Rigolot E. et al., Landscape-wildfire interactions in southern Europe: implications for landscape management. J. Environ. Manage., 2011, 10, 2389–2402. http://dx.doi.org/10.1016/j.jenvman.2011.06.02810.1016/j.jenvman.2011.06.028Search in Google Scholar PubMed

[7] López-Poma R., Orr B.J., Bautista S., Effect of prefire land use on vegetation recovery after fire in a Mediterranean mosaic landscape. Int. J. Wildland Fire, (submitted to publication) Search in Google Scholar

[8] Mayor A.G., Bautista S., Llovet J., and Bellot J., Post-fire hydrological and erosional responses of a Mediterranean landscape: Seven years of catchmentscale dynamics. Catena, 2007, 71, 68–75 http://dx.doi.org/10.1016/j.catena.2006.10.00610.1016/j.catena.2006.10.006Search in Google Scholar

[9] De Luís M., Raventós J., González-Hidalgo J.C., Fire and torrential rainfall: effects on seedling establishment in Mediterranean gorse shrublands. Int. J. Wildland Fire, 2005, 14, 413–422 http://dx.doi.org/10.1071/WF0503710.1071/WF05037Search in Google Scholar

[10] Pausas J. G., Vallejo V. R., The role of fire in European Mediterranean ecosystems. In: Chuvieco E. (Ed.), Remote sensing of large wildfires in the European Mediterranean basin. Springer-Verlag, 1999, 3–16 http://dx.doi.org/10.1007/978-3-642-60164-4_210.1007/978-3-642-60164-4_2Search in Google Scholar

[11] Pausas J. G., Fernandez-Muñoz S., Fire regime changes in the Western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Climatic Change, 2012, 110, 215–226 http://dx.doi.org/10.1007/s10584-011-0060-610.1007/s10584-011-0060-6Search in Google Scholar

[12] Mouillot, F., Rambal, S., Joffre, R., 2002. Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Glob. Change Biol., 8, 423–437 http://dx.doi.org/10.1046/j.1365-2486.2002.00494.x10.1046/j.1365-2486.2002.00494.xSearch in Google Scholar

[13] Moriondo M., Good P., Durao R., Bindi M., Giannakopoulos C., Corte-Real J., Potential impact of climate change on fire risk in the Mediterranean area. Clim. Res., 2006, 31, 85–95 http://dx.doi.org/10.3354/cr03108510.3354/cr031085Search in Google Scholar

[14] Levin, N., Heimowitz, A., Mapping spatial and temporal patterns of Mediterranean wildfires from MODIS. Remote Sens. Environ., 2012, 126, 12–26 http://dx.doi.org/10.1016/j.rse.2012.08.00310.1016/j.rse.2012.08.003Search in Google Scholar

[15] Díaz-Delgado R., Pons X., Spatial patterns of forest fires in Catalonia (NE of Spain) along the period 1975–1995. Analysis of vegetation recovery after fire. Forest Ecol. Manag., 2001, 147, 67–74 http://dx.doi.org/10.1016/S0378-1127(00)00434-510.1016/S0378-1127(00)00434-5Search in Google Scholar

[16] Wittenberg L., Malkinson D., Beeri O., Halutzy A., Tesler N., Spatial and temporal patterns of vegetation recovery following sequences of forest fire in a Mediterranean landscape, Mt. Carmel Israel. Catena, 2007, 71, 76–83 http://dx.doi.org/10.1016/j.catena.2006.10.00710.1016/j.catena.2006.10.007Search in Google Scholar

[17] Gouveia C., DaCamara C.C., Trigo R.M., Post-fire vegetation recovery in Portugal based on spot/vegetation data. Nat. Hazard. Earth Sys., 2010, 10, 673–684 http://dx.doi.org/10.5194/nhess-10-673-201010.5194/nhess-10-673-2010Search in Google Scholar

[18] van Leeuwen W.J.D., Casady G., Neary D., Bautista S., Alloza J.A., Carmel Y. et al., Monitoring postwildfire vegetation response with remotely sensed time-series data in Spain, USA and Israel. Int. J. Wildland Fire, 2010, 19, 75–93 http://dx.doi.org/10.1071/WF0807810.1071/WF08078Search in Google Scholar

[19] van Leeuwen, W.J.D., Monitoring the effects of forest restoration treatments on post-fire vegetation recovery with MODIS multitemporal data. Sensors, 2008, 8, 2017–2042 http://dx.doi.org/10.3390/s803201710.3390/s8032017Search in Google Scholar

[20] Barbosa P.M., Grégoire J.-M., Pereira J.M.C., An algorithm for extracting burned areas from time series of AVHRR GAC data applied at a continental scale. Remote Sens. Environ., 1999, 69, 253–263 http://dx.doi.org/10.1016/S0034-4257(99)00026-710.1016/S0034-4257(99)00026-7Search in Google Scholar

[21] Chuvieco E., Ventura G., Martín M.P., Gómez I., Assessment of multitemporal compositing techniques of MODIS and AVHRR images for burned land mapping. Remote Sens. Environ., 2005, 94, 450–462 http://dx.doi.org/10.1016/j.rse.2004.11.00610.1016/j.rse.2004.11.006Search in Google Scholar

[22] Chuvieco E., Martín M.P., Palacios A., Assessment of different spectral indices in the red-Near-infrared spectral domain for burned land discrimination. Int. J. Remote Sens., 2002, 23, 5103–5110 http://dx.doi.org/10.1080/0143116021015312910.1080/01431160210153129Search in Google Scholar

[23] Fraser R.H., Li Z., Cihlar J., Hotspot and NDVI differencing synergy (HANDS): A new technique for burned area mapping. Remote Sens. Environ., 2000, 74, 362–376 http://dx.doi.org/10.1016/S0034-4257(00)00078-X10.1016/S0034-4257(00)00078-XSearch in Google Scholar

[24] Giglio L., Descloitres J., Justice C.O., Kaufman Y.J., An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ., 2003, 87, 273–382 http://dx.doi.org/10.1016/S0034-4257(03)00184-610.1016/S0034-4257(03)00184-6Search in Google Scholar

[25] Giglio L., van der Werf G.R., Randerson J.T., Collatz G.J., Kasibhatla P., Global estimation of burned area using MODIS active fire observations. Atmos. Chem. Phys., 2006, 6, 957–974 http://dx.doi.org/10.5194/acp-6-957-200610.5194/acp-6-957-2006Search in Google Scholar

[26] Roy D.P., Jin Y., Lewis, P.E., Justice, C.O., Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sens. Environ., 2005, 97, 137–162 http://dx.doi.org/10.1016/j.rse.2005.04.00710.1016/j.rse.2005.04.007Search in Google Scholar

[27] Davies D.K., Ilavajhala S., Wong M.M., Justice, C.O., Fire information for resource management system: Archiving and distributing MODIS active fire data. IEEE T. Geosci. Remote, 2009, 47, 72–79 http://dx.doi.org/10.1109/TGRS.2008.200207610.1109/TGRS.2008.2002076Search in Google Scholar

[28] Roy D.P., Boschetti L., Justice C.O., Ju J., The Collection 5 MODIS burned area product-global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ., 2008, 112, 3690–3707 http://dx.doi.org/10.1016/j.rse.2008.05.01310.1016/j.rse.2008.05.013Search in Google Scholar

[29] Boschetti L., Roy D., Barbosa P., Boca R., Justice C., A MODIS assessment of the summer 2007 extent burned in Greece. Int. J. Remote Sens., 2008, 29, 2433–2436 http://dx.doi.org/10.1080/0143116070187456110.1080/01431160701874561Search in Google Scholar

[30] Loepfe L., Lloret F., Romn-Cuesta R.M., Comparison of burnt area estimates derived from satellite products and national statistics in Europe, Int. J. Remote Sens., 2012, 33, 3653–3671 http://dx.doi.org/10.1080/01431161.2011.63195010.1080/01431161.2011.631950Search in Google Scholar

[31] García M.A., Alloza J.A., Bautista S., Rodríguez F., Detection and análisis of burnt areas from MODIS derived NDVI time series data. Proceedings of the SPIE, 2013, Vol. 8795, 879521, 9 pp. 10.1117/12.2027168Search in Google Scholar

[32] Savitzky A., Golay M.J.E., Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem., 1964, 36, 1627–1639 http://dx.doi.org/10.1021/ac60214a04710.1021/ac60214a047Search in Google Scholar

[33] Jensen J. R., Introductory digital image processing: A remote sensing perspective. Prentice Hall, New Jersey, 2005 Search in Google Scholar

[34] Pontius R.G., Millones M., Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens., 2011, 32, 4407–4429 http://dx.doi.org/10.1080/01431161.2011.55292310.1080/01431161.2011.552923Search in Google Scholar

[35] Bastarrika A., Chuvieco E., Martín M.P., Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sens. Environ., 2011, 115, 1003–1012 http://dx.doi.org/10.1016/j.rse.2010.12.00510.1016/j.rse.2010.12.005Search in Google Scholar

[36] Stroppiana D., Bordogna G., Carrara P., Boschetti M., Boschetti L., Brivio, P.A., A method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple spectral indices and a region growing algorithm. ISPRS J. Photogramm., 2012, 69, 88–102 http://dx.doi.org/10.1016/j.isprsjprs.2012.03.00110.1016/j.isprsjprs.2012.03.001Search in Google Scholar

[37] Gómez I., Martín M.P., Prototyping an artificial neural network for burned area mapping on a regional scale in Mediterranean areas using MODIS images, Int. J. Appl. Earth Obs. Geoinf., 13, 2011, 741–752 http://dx.doi.org/10.1016/j.jag.2011.05.00210.1016/j.jag.2011.05.002Search in Google Scholar

[38] Koutsias N., Pleniou M., Mallinis G., Nioti F., Sifakis N.I., A rule-based semi-automatic method to map burned areas: exploring the USGS historical Landsat archives to reconstruct recent fire history, Int. J. Remote Sens., 2013, 34, 7049–7068 http://dx.doi.org/10.1080/01431161.2013.81645210.1080/01431161.2013.816452Search in Google Scholar

[39] Moreno Ruiz J.A., Riaño D., Arbelo M., French N.H.F., Ustin S.L., Whiting M.L., Burned area mapping time series in Canada (1984–1999) from NOAA-AVHRR LTDR: A comparison with other remote sensing products and fire perimeters, Remote Sens. Environ., 117, 2012, 407–414 http://dx.doi.org/10.1016/j.rse.2011.10.01710.1016/j.rse.2011.10.017Search in Google Scholar

Published Online: 2014-5-29
Published in Print: 2014-3-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 7.12.2023 from https://www.degruyter.com/document/doi/10.2478/s13533-012-0167-y/html
Scroll to top button