Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 28, 2012

Analysis of swarm behavior using compound eye and neural network control

Wolfgang Kramper EMAIL logo , Ralf Wanker and Karl-Heinz Zimmermann
From the journal Open Computer Science

Abstract

The emergent collective intelligence of groups of simple agents known as swarm intelligence is a new exiting way of achieving a form of artificial intelligence. This paper studies a formal model for swarm intelligence inspired by biological swarms found in nature. Software agents are used to model the individuals of a swarm. Each agent is controlled by a neural network that processes position data from the others in its visible zone given by a compound eye and in this way navigates in 3D space. An additional input parameter is used to represent the agent’s motivation to form a swarm. Simulations with different motivation parameters exhibit remarkable agent formations that can be considered as biologically plausable. Several ways to improve the model are discussed.

[1] Au G., Goss S., Heinze C., Pearce A.R., RescueModel: A multi-agent simulation of bushfire disaster management, LNCS, 2019, 285–290, 2001 10.1007/3-540-45324-5_27Search in Google Scholar

[2] Blum C., Merkle D., Swarm Intelligence — Introduction and Applications, Springer, New York, 2008 10.1007/978-3-540-74089-6Search in Google Scholar

[3] Braitenberg V., Vehicles: Experiments with Synthetic Psychology, MIT Press, Cambridge, MA, 1984 Search in Google Scholar

[4] Chalmer, D.J., Clayton P., Davis P., Strong and weak emergence, The Re-Emergence of Emergence, Oxford Univ. Press, Oxford, 2006 Search in Google Scholar

[5] Chivers D.P., Brown G.E., Smith R.J.F., Familiarity and shoal cohesion in fathead minnows Pimephales promelas: implications for antipredator behavior, Can. J. Zool., 73, 955–960, 1995 http://dx.doi.org/10.1139/z95-11110.1139/z95-111Search in Google Scholar

[6] Couzin I.D., Krause J., James R., Ruxton G.D., Franks R.N., Collective Memory and Spatial Sorting in Animal Groups J. Theor. Biol., 218, 1–11, 2002 http://dx.doi.org/10.1006/jtbi.2002.306510.1006/jtbi.2002.3065Search in Google Scholar PubMed

[7] Ebling M., Di Loreto M., Presley M., Wieland F., Jefferson D., Ant foraging model implemented on the time warp operating system, Simulation Series, 21, 21–26, 1989 Search in Google Scholar

[8] Freeman J.A., Skapura D.M., Neural Networks: Algorithms, Applications, and Programming Techniques, Addison-Wesley, Reading, MA, 1991 Search in Google Scholar

[9] Griffiths S.W., Brockmark S., Höjesjö J., Johnsson J.I., Coping with divided attention: the advantage of familiarity, Proc. Biol. Sci., 271, 695–699, 2004 http://dx.doi.org/10.1098/rspb.2003.264810.1098/rspb.2003.2648Search in Google Scholar PubMed PubMed Central

[10] Heinze C., Goss S., Josefsson T., Bennett K., Lloyd I., Murray G., Oldfield J., Interchanging agents and humans in military simulation, AI Magaz., 23, 37, 2002 Search in Google Scholar

[11] Hemelrijk C.K., Hildenbrandt H., Self-organized shape and frontal density of fish schools, Eth., 114, 245–254, 2008 http://dx.doi.org/10.1111/j.1439-0310.2007.01459.x10.1111/j.1439-0310.2007.01459.xSearch in Google Scholar

[12] Hemelrijk C.K., Kunz H., Density distribution and size sorting in fish schools: an individual-based model, Behav. Ecol., 16, 178–187, 2005 http://dx.doi.org/10.1093/beheco/arh14910.1093/beheco/arh149Search in Google Scholar

[13] Heppner F., Grenander U., Krasner S., A stochastic nonlinear model for coordinated bird flocks, The Ubiquity of Chaos, AAAS Publications, Washington, DC, 1990 Search in Google Scholar

[14] Hiramatsu K., Shikasho S., Mori K., Mathematical modeling of fish schooling of Japanese medaka using basic behavioral pattern, J. Faculty Agricult., 45, 237–253, 2000 10.5109/24374Search in Google Scholar

[15] Hoare D.J., Couzin I.D., Godin J.-G.J., Krause J., Context-dependent group size choice in fish, Anim. Behav., 67, 155–164, 2004 http://dx.doi.org/10.1016/j.anbehav.2003.04.00410.1016/j.anbehav.2003.04.004Search in Google Scholar

[16] Höjesjö J., Johnsson J.I., Petersson E., Jarvi T., The importance of being familiar: individual recognition and social behavior in sea trout Salmo trutta, Behav. Ecol., 9, 445–451, 1998 http://dx.doi.org/10.1093/beheco/9.5.44510.1093/beheco/9.5.445Search in Google Scholar

[17] Huth A., Wissel C., The simulation of the movement of fish schools, J. Theor. Biol., 156, 365–385, 1992 http://dx.doi.org/10.1016/S0022-5193(05)80681-210.1016/S0022-5193(05)80681-2Search in Google Scholar

[18] Huth A., Wissel C., The simulation of fish schools in comparison with experimental data, Ecol Modell., 74–75, 135–146, 1994 http://dx.doi.org/10.1016/0304-3800(94)90013-210.1016/0304-3800(94)90013-2Search in Google Scholar

[19] Kandel E.R., Biology of Aplysia, A Contribution to the Comparative Study of Opisthobranch Molluses, W. H. Freeman and Company, San Francisco, 1979 Search in Google Scholar

[20] Kennedy J., Eberhardt R., Particle swarm optimization, Proc. IEEE Int. Conf. Neural Network, 1942–1948, Piscataway, NJ, 1995 Search in Google Scholar

[21] Kramper W., Simulation von Schwarmverhalten, Mensch & Buch, Berlin, Hamburg University of Technology, 2010 Search in Google Scholar

[22] Kunz H., Hemelrijk C.K., Artificial Fish Schools: Collective Effects of School Size, Body Size, and Body Form, Artif. Life, 9, 237–253, 2003 http://dx.doi.org/10.1162/10645460332239245110.1162/106454603322392451Search in Google Scholar

[23] Neumann T.R., Modelling Insect Compound Eyes: Space-Variant Spherical Vision, In: Proceedings of the 2nd International Workshop on Biologically Motivated Computer Vision, Springer-Verlag, Berlin, 2002 10.1007/3-540-36181-2_36Search in Google Scholar

[24] Olfati-Saber R., Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory, IEEE Trans. Autom. Control, 2004 Search in Google Scholar

[25] Parrish J.K., Viscido S.V., Hemelrijk C.K., Traffic rules of fish Schools: A review of agent-based approaches, Self-Organization and Evolution of Social Behavior, Cambridge Univ Press, Cambridge, 2005 Search in Google Scholar

[26] Partridge B.L., Pitcher T., Cullen J.M., Wilson J., The three-dimensional structure of fish schools, Behav. Ecol. Sociobiol., 6, 277–288, 1980 http://dx.doi.org/10.1007/BF0029277010.1007/BF00292770Search in Google Scholar

[27] Reynolds C., Flocks, Herds, and Schools: A Distributed Behavioral Model In: Proceedings of SIGGRAPH’ 87, 21, 25–34, 1987 http://dx.doi.org/10.1145/37402.3740610.1145/37402.37406Search in Google Scholar

[28] Romey W.L., Individual differences make a difference in the trajectories of simulated schools of fish, Ecol. Modell., 92, 65–77, 1996 http://dx.doi.org/10.1016/0304-3800(95)00202-210.1016/0304-3800(95)00202-2Search in Google Scholar

[29] Sahli N., Moulin B., Ekemas, Appl. Intell., 31, 188–209, 2009 http://dx.doi.org/10.1007/s10489-008-0122-210.1007/s10489-008-0122-2Search in Google Scholar

[30] Shreiner D., Woo M., Neider J., Davis T., OpenGL Programming Guide, Addison Wesley, Amsterdam, 2007 Search in Google Scholar

[31] Snyder A.W., Acuity of compound eyes: Physical limitations and design, J. Comp. Physiol., 116, 161–182, 1977 http://dx.doi.org/10.1007/BF0060540110.1007/BF00605401Search in Google Scholar

[32] Swaney W., Kendel J., Capon H., Brown C., Laland K.N., Familiarity facilitates social learning of foraging behavior in the guppy, Anim. Behav., 62, 591–598, 2002 http://dx.doi.org/10.1006/anbe.2001.178810.1006/anbe.2001.1788Search in Google Scholar

[33] Toner J., Tu Y., Flocks, herds, and schools: A quantitative theory of flocking, Am. Phys. Soc., 58, 4828–4858, 1998 10.1103/PhysRevE.58.4828Search in Google Scholar

[34] Ward A.J.W., Hart P.J.B., Foraging benefits of shoaling with familiars may be exploited by outsiders, Anim. Behav., 69, 329–335, 2005 http://dx.doi.org/10.1016/j.anbehav.2004.06.00510.1016/j.anbehav.2004.06.005Search in Google Scholar

[35] Weber H., Grundrißder Insektenkunde, Gutav Fischer Verlag, Stuttgart, 1974 Search in Google Scholar

[36] Wood A.J., Ackland G.J., Evolving the selfish herd: emergence of distinct aggregating strategies in an individualbased model, In: Proceedings of the Royal Society, 274, 1637–1642, 2007 http://dx.doi.org/10.1098/rspb.2007.030610.1098/rspb.2007.0306Search in Google Scholar PubMed PubMed Central

[37] Zell A., Simulation neuronaler Netze, R. Oldenbourg Verlag, München Wien, 1997 Search in Google Scholar

Published Online: 2012-3-28
Published in Print: 2012-3-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 31.1.2023 from https://www.degruyter.com/document/doi/10.2478/s13537-012-0004-x/html
Scroll Up Arrow