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Abstract: In this paper, we present the application of the Differential Evolution (DE) algorithm to the problem of finding
approximate Nash equilibria in matrix, non-zero sum games for two players with finite number of strategies. Nash
equilibrium is one of the main concepts in game theory. It may be classified as continuous problem, where
two probability distributions over the set of strategies of both players should be found. Every deviation from the
global optimum is interpreted as Nash approximation and called ε-Nash equilibrium. The main advantage of the
proposed algorithm is self-adaptive mutation operator, which direct the search process. The approach used in
this article is based on the probability of chosing single pure strategy. In optimal mixed strategy, every strategy
has some probability of being chosen. Our goal is to determine this probability and maximize payoff for a single
player.
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1. Introduction
Game theory, the study of strategic interactions among rational agents, has had a great impact on many sciences suchas economics [1], evolutionary biology [10], political science [23], and computer science. Close connection beetween gametheory and decision theory allows the use of concepts related to game theory in decision making. The Nash equilibriumis one of the most important concepts in game theory, forming the basis of much recent work in the multiagent decisionmaking, artificial inteligence [32] and electronic marketplaces [11]. As such, effciently computing Nash equilibria is oneof the most important problems in the computational game theory. In this article we propose a new approach for theevolutionary generating approximate Nash equlibria. Our algorithm is based on the well known John Nash theoremwhich says that every game has at least one Nash equilibrium in mixed strategies [21]. We consider two person,non-cooperative games in the strategic form with random and normalized payoffs where every player has finite numberof strategies to choose. Since it was shown that finding a Nash equilibrium is PPAD-complete [5], even for 2-player
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games [4], the question of approximate Nash equilibrium emerged as the central remaining open problem in the area ofequilibrium computation. We assume that all payoffs have been normalized to values between 0 and 1. This is a commonassumption, since scaling the utilities of a player by any positive factor, and applying any additive constant, results inan equivalent game.In general, game Γ in the strategic form for two players is formally described as a couple:
Γ(R, C ) (1)

and consists of two payoff matrices C ∈ RM×N for the row player and R ∈ RM×N for the column player. M and Ndenote, respectively, the number of the strategies for the first and the second player. We consider bimatrix games, sowe also have a set of players with two elements {X, Y }, where X is called the row player, and Y is called the columnplayer. Every player has a finite set of strategies: X = (x1, x2, ..., xm) for the first player, and Y = (y1, y2, ...yn) for thesecond player. Single strategies of both players are often called pure strategies, in constrast to mixed strategies. Wedefine mixed strategy for the X player as the m-dimensional vector:
x = (P(x1), P(x2), ..., P(xm)),

where:
P(xi) - a probability of choosing strategy xi.In other words, a mixed strategy for a player is a vector of probabilities for playing single strategies. We also introducethe concept of the support. The support of a mixed strategies is the set of pure strategies which have positive probability.Both mixed strategies for the column, and the row player are called strategy profile. Support of the mixed strategy x isa subset Mx :

∀i, xi ∈ Mx , P(xi) > 0
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Figure 1. An example of the 2 player game in the strategic form.

Every bimatrix game (Fig. 1) consists of two joined payoff matrices: numbers on the left (in each cell) reflect the X playerpayoff and numbers of the right - the Y player payoff. Players choose their moves simultaneously (X player choosesone of the rows, and Y player chooses one of the columns). Values at the intersection - cell of the bimatrix correspondto payoffs for players.Our motivation is to show a new evolutionary method of finding Nash equilibrium in non-zero sum games with knownsupport. We proposed the Differential Evolution algorithm (DE) [30]. The Differential Evolution has a very strongmutation schema, which directs search process to the global optimum. Mutation is the major genetic operator. It is not atrivial process and it also provides the algorithm convergence. Moreover, the mutation is performed before the crossoverprocess. The proposed approach will be explained in details in Section 4.
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Our article is organized as follows: first, we give some examples of other algorithms (including mathematical methods)for computing exact and aproximate Nash equlibria. In the next section we give a brief description of the problem. Inthe Section 4 we describe the DE algorithm and explain details of the solution. Section 5 contains the experiments andresults. We summarize with short conclusions.
2. Related works
The main algorithm for computing Nash equilibria is the Lemke–Howson (LH) algorithm [16], which is a pivoting algorithmsimilar to the simplex algorithm for linear programming. The algorithm is started by choosing a pure strategy of one ofthe players. For each such choice the algorithm progresses deterministically, giving rise to a different LH path, whichterminates at some equilibrium of the game. Unfortunatelly, the classical algorithm by Lemke and Howson (1964) notalways returns every solution in the game. The second, modified implementation of the algorithm was proposed in 1991[13]. The algorithm as described by one of the authors is based on the original version invented by Lemke and Howson.However, it differs from this version with respect to several features. It works directly with the matrices defining thebimatrix game. It has an easy and very direct geometrical interpretation. In the same year, other, very computationalexpensive approach was proposed [12]. In 2004 a new, faster algorithm using the support enumeration was proposed[26]. Mentioned algorithm is similar to the previous one, but for example it checks dominant strategies. It is very fast,especially for the games with small support. That approach was also considered as parallel [34]. Authors considered theproblem of computing all Nash equilibria in bimatrix games. The algorithm computes all Nash equilibria by searchingall possible supports of mixed strategies. One year later in 2005 an approach based on the mixed integer programmingwas described [28]. Other methods involve using graphs [33]. In particular, the general two-person problem is reducedto an indefinite quadratic programming problem of special structure involving the n× n adjacency matrix of an inducedsimple graph specified by the input data of the game, where n is the number of players strategies. There were alsoseveral attempts to develop algorithms oriented at finding pure Nash equilibria [31], but this problem seems to be lesssignificiant (pure Nash equilibria are far easier to find than mixed Nash equilibria). Other type of the equilibrium:well-supported Nash equilibrium has been presented in [24]. As for polynomial time algorithms, it is fairly simple toobtain a 34 -approximation and even better a 12 -approximation [6]. An improved approximation of the ε−Nash equilibriumfor ε ≈ 0.38197 was obtained by Daskalakis, Mehta and Papadimitriou [7]. In [29] P. Spirakis and H. Tsaknakis haveobtained another algorithm achieving an improved approximation of 0.3393. The concept of the adaptive algorithm isused in the GAMBIT program [19] and it is based on the quantum response equilibrium (QRE). Above articles focus onfinding Nash equilibria, when we do not know anything about the game. In [20] the method for calculating expectedpayoffs for both players was proposed. This property may be used to find the Nash equilibrium. As far as we know,it’s the first approach for computing Nash equilibria, when support for both players is given. This problem may beconsidered as somewhat simpler than finding the Nash equilibrium without given support. The roposed approach maybe considred as unique, because it is based on the equation defined by I. Milchtaich in his article. We present it withdetails in next sections.
3. Problem formulation and definitions
A non-cooperative game in strategic form consists of a set of players, and, for each player, a set of strategies availableto him as well as a payoff function mapping each strategy profile (i.e. each combination of strategies, one for eachplayer) to a real number that captures the preferences of the player over the possible outcomes of the game. Recallingthe support definition: support of the mixed strategy x is a subset Mx :

∀i, xi ∈ Mx , P(xi) > 0
where:
P(xi) - the probability of choosing strategy xi. Now we can define the Nash equilibrium concept. Nash equilibrium isa strategy profile x∗, y∗ such that no deviating player could achieve a payoff higher than the one that the specific profilegives him. In other words, Nash equilibrium definition is proper for every pure strategy in the support. Mixed strategy
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profile for two players may be defined by the following equations:
∀i, xi ∈ Mx , xiRy∗ ≤ x∗TRy∗ (2)
∀i, yi ∈ Ny, x∗TCyi ≤ x∗TCy∗, (3)

where:
xi - the i-th pure strategy of the X player;
xiRy∗ - the payoff for the Y using his mixed strategy y∗ against the i-th pure strategy of the player X ;
Mx ,Ny - support for the X and Y players;
x∗T - transposed vector specifying the mixed strategy of the X ;
R - the Row player;
C - the Column player.

Nash Equilibrium
X

Y

Player X

Player Y

Figure 2. Simple Nash Equilibrium Example.

In Fig. 2 we can see visualisation of the simple Nash equilibrium. The X axis represents the probability of choosingthe first strategy of player X . The probability of the second strategy may be computed as follows: P(x2) = 1 − P(x1).The same assumption applies to the second player. Despite the certain existence of such equilibria [21], the problem offinding any Nash equilibrium even for games involving only two players has been recently proved to be complete in thePPAD class. PPAD is a class of total search problems, that is, problems for which solutions are guaranteed to exist,and the challenge is to actually exhibit a specific solution. This fact emerged the computation of approximate Nashequilibria, referred to as ε-Nash equilibria. For any ε > 0, we define ε-Nash equilibrium as:
∀i, si ∈ Mx , siRy∗ ≤ x∗TRy∗ + ε, (4)
∀i, ti ∈ Ny, x∗TCti ≤ x∗TCy∗ + ε. (5)

An ε-Nash equilibrium is a strategy profile such that no deviating player could achieve a payoff higher than the onethat the specific strategy profile gives him, plus ε.
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Figure 3. Two examples of games. a - with all strategies active. b - some strategies with probability of chosing equal to 0.

In games where players use every pure strategy (Fig. 3 a), so set X is equal to Mx and set Y is equal to Ny thefollowing equality is fulfiled:
∀i, xiRy∗ = x∗TRy∗, (6)
∀i, x∗TCyi = x∗TCy∗. (7)

As we can see, when using optimal mixed strategy against any pure strategy of second player the payoff is always thesame. Above equalities are not satisfied when set X 6= Mx or set Y 6= Ny (Fig. 3b). Every game may be transformedinto the game with known support for both players, when this support is given (Fig. 4).
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Figure 4. Strategies with 0 probability of chosing are skipped/

Our problem may be described as finding probability distribution over the set of pure strategies of both players satisfyingEqs. 2 and 3.The above idea is based on the I. Milchtaich article [20]. The author proposed a method for computing payoffs in bimatrixgames with completely mixed Nash equilibria. It should be noted that it is possible to compute Nash equilibrium, if weknow exact payoff for both players. In any bimatrix game in which the payoff matrix of one of the players is given by A,and in any equilibrium in the game in which this player’s strategy is completely mixed, the player’s payoff λ is given bythe formula:
λ− x
λ− y = |A− x·E ||A− y·E | (8)
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where A is a square matrix, and x and y a pair of distinct real numbers with |A− y·E | 6= 0.Unfortunately I. Milchtaich did not present any deep study of this problem. We treat the above equation as a startingpoint. On the basis of the assumptions from this section we were able to derive a method for computing completelymixed Nash equilibria. In the next section we present details of the proposed solution. It shouldn’t be treated likea stand-alone method. Our main intention is rather to present a method which will be the basis of the algorithm tocomputing mixed Nash equilibria. We want to provide a method based on the Diffferential Evolution, which could besuccessfully compared with state-of-the-art algorithms like the Lemke Howson algorithm.
4. Proposed solution
In the last decades many deterministic and stochastic methods for optimization problems have been developed. However,no universal technique which could give good results for all optimization problems has been found yet. Differentapproaches are used to find the global optimum for multimodal function. Since deterministic methods are often tooweak or too slow, stochastic methods are used. These methods can find only approximate solutions, but in manyapplications this approach is sufficient. Algorithms of this type often take inspiration from biological or social behavior.The ase of these techniques is a population of individuals which is improved in subsequent iterations. The DifferentialEvolution algorithm was chosen from other evolutionary approaches. This method is dedicated to the continuous functionoptimization problem. We shown that problem of finding mixed Nash equilibrium may be treaten as the continuousproblem. In this context, the Differential Evolution algorithm seems to be the most proper way to solve the aboveproblem.Differential evolution (DE) is a stochastic, population-based search strategy developed by Storn and Price in 1995,and deeply studied by Jouni Lampinen, Ivan Zelinka [14, 15, 27], and others. Mainly it has been applied to optimizefunctions defined over continuous-valued landscapes. DE has also been applied to train neural networks [18]. In thiscase an individual represents a complete NN. Similar approach was made for training Fuzzy Cognitive Maps [9]. Otherapplications of Differential Evolution focus on clustering [25] or image analysis [17].As in any other evolutionary algorithms, before the population can be initialized, both upper and lower bounds for eachgene of the genotype must be specified. After that, the selection process takes place. During the selection stage, threeparents are chosen and they generate a single offspring which competes with a parent to determine who passes to thefollowing generation. DE differs from these evolutionary algorithms in that:

• mutation is a primary operator, and crossover is an auxiliary operator,
• mutation is applied first to generate a trial vector, next this vector is used in crossover procedure,
• mutation step sizes are not sampled from a prior known probability distribution function,
• selection always favor better individual.

The DE algorithm begins with the initialization of population P(0) which consist of nX individuals. The initializationconsists of a random distribution of individuals. The population should be distributed uniformly, which provides a goodsampling of search space. Over time, as the search progresses, the distances between individuals become smaller, withall individuals converging to the same solution. In the main loop of the algorithm some actions which should improvethe population are performed. For the each individual (vector), firstly, its fitness is evaluated. Then the mutation processfollows. The pseudocode of the general DE algorithm is presented below:
1. Create the initial population of genotypes S = {~s1, ~s2, ..., ~sn},
2. Set the generation number g = 0
3. Until the stop criterion is not met:

(a) Compute the fitness function for every genotype in the population
{f (~s1), f (~s2), ..., f (~sn)}(b) Create the population of trial genotypes Vg based on Sg
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Figure 5. DE Schema.

(c) Make crossover of genotypes from the population Sg and Vg to create population Ug(d) Choose the genotypes with the highest fitness function from population Ug and Sg for the next population
The problem of computing Nash equilibria may be clasified as the continuous function optimization problem. In gametheory a player is said to use a mixed strategy whenever he or she chooses to randomize over the set of availableactions. Formally, a mixed strategy is a probability distribution that assigns to each available action a likelihood ofbeing selected. Every action is a row or a column of the given payoff matrix, so it’s simple way to create the populationof individuals on the basis of the payoff matrix (Fig. 6). For example, 2 player game, where each of the players has20 pure strategies is 40-dimensional optimization problem. Every gene in genotype has a value in the range 〈0, 1〉 andrepresents the probability of choosing the pure strategy.The DE mutation operator produces a trial vector for each individual of the current population by mutating a targetvector with a weighted differential. We shown that in the strategic form game probabilities of choosing single strategyof the player may be represented as the vector. This vector (also called individual) is treated like a standard individualin the basic DE. In DE, mutation step sizes are influenced by differences between individuals of the current population:

∀i ∀j vi,j = sr1,j + F · (sr2 ,j − sr3,j )where sr1 ,j is the j-th element of the individual r1 in the parent population S. The parameter F specifies the strengthof impact of the difference vector (between the two genotypes from the population). r1, r2, and r3 are three randomlyselected indexes of individuals. Each increment moves selected individuals towards the global optimum. Note that themutation is successively subjected to each genotype within the population. An individual vi represents individual aftermutation. (sr2 − sr3 ) is a differential vector created from the two random individuals sr2 and sr3 .Like for many other evolutionary algorithms, also for Differential Evolution many modifications were developed. Themost often modified elements of DE algorithm are:
• a method of target vector selection (denoted as x),
• a number of differential vectors used for trial vector creation (y),
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Figure 6. Creation of the single individual.

• a crossover method (z).Each of the DE algorithms can be described by strategy DE/x/y/z.
• Strategy I: DE/rand/1/z It is the DE strategy which characterises the basic DE algorithm. It uses random (rand)selection of target vector and only one differential vector for the trial vector creation. Like other strategies alsothis one can use binomial (bin) or exponential (exp) crossover. In the DE/rand/1/z strategy the trial vector iscalculated form the equation:

ui(t) = xi1 (t) + F · (xi2 (t)− xi3 (t))
• Strategy II: DE/best/1/zIn this strategy the best individual x̂(t) from the current population is the target vector. In this case the trialvector ui(t) is calculated as follows:

ui(t) = x̂(t) + F · (xi2 (t)− xi3 (t))
• Strategy III: DE/x/nv /z
nv signifies the number of differential vectors used for trial vector ui(t) creation. Trial vector in this strategy iscalculated from the following equation:

ui(t) = xi1 (t) + F ·
ns∑
k=1 (xi2 ,k (t)− xi3,k (t))

(xi2,k (t)− xi3,k (t)) denotes the k th differential vector (k ∈ {1, 2, . . . , nv}). The larger the value of nv , the better thesearch space exploration. Unfortunately, the more differential vectors are used in the mutation, the greater thecomplexity of the algorithm.
Above we presented three most popular differential evolution schemas. Nevertheless, in our research we used the basicmutation. We want to show, that high effectiveness of the algorithm does not depend on the selected schema.The crossover process consists of the creation of a new individual (offspring) ui. Some of the elements of the vector uiare derived from individual pi and the others from the trial vector vi. The crossover operation operates both the genotypefrom the population S and the trial genotype (population V ). In the process of crossing over, the parameter CR〈0, 1〉and the randomly-chosen number are used.

∀i∀jui,j = {
vi,j when RAND[0, 1) < CR ,
pi,j in other case.
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Figure 7. Crossover schema.

Simple crossover schema may be seen in the Fig. 7.For the simulation of the evolution, we apply fitness function given below:
fitness = n∑

i=1 |x
∗TRy ∗ −x∗TRyi|︸ ︷︷ ︸Payoff deviation X

+ n∑
i=1 |x

∗TCy ∗ −xiRy∗|︸ ︷︷ ︸Payoff deviation Y

+c1· |
n∑
i=1 P(xi)− 1|︸ ︷︷ ︸probability factor X

+c2· |
m∑
i=1 P(yi)− 1|︸ ︷︷ ︸probability factor Y

(9)

where:
xiRy∗ - the payoff for the Y using his mixed strategy y∗ against the i-th pure strategy of the player X ;
c1 - scalability factor for the X player equal to dimX · 10, c1 = 60 ;
c2 - scalability factor for the Y player equal to dimY · 10, c2 = 60;
P(xi) - probability of choosing pure i− th strategy of the X player;
P(xi) - probability of choose i-th pure strategy of X player.

In the above Eq. 9 we can separate the fitness function into four parts. Payoff deviations (payoff deviation X and payoffdeviation Y ) are calculated on the basis of the expected payoff. If each player uses his best mixed strategy, both factorsare equal zero. The sum of all probabilities for each player should be equal to one, so two other parts of the fitnessfunction (probability factor X and probability factor Y ) should be equal to zero. The fitness function is computed for eachindividual from population U. The genotype with the lower fitness function value is transferred to the next population.Fitness function equal to 0 is identified as global optimum - Nash equilibrium. To construct the population for the nextgeneration, deterministic selection is used: the offspring replaces the parent if the fitness of the offspring is better thanits parent; otherwise the parent survives to the next generation. This ensures that the average fitness of the populationdoes not deteriorate. The best individual derived from the last generation is the result of the DE algorithm.
5. Parameter tuning in the differential evolution
The Differential Evolution is the algorithm which requires to set a few parameters. In this section we describe in detailsthese parameters and their impact on the algorithm convergence. The most important parameters are:

• F mutation factor - parameter specifying the impact of difference between two individuals at the value of thenewly created individual genotype (trial genotype). Large value increases the randomness of the search. In theliterature, F is often equal to 0.7. However, it’s important to check, if this value is proper in the problem, whereevery gene in the genotype it’s in the range of 〈0, 1〉.
• CR crossover factor - The crossover process uses both the individual from the initial population, as well as thetrial individual. CR determines, which parts from the trial genotype are inherited by the child individual.
• K number of the individuals - there where a few examples of determine the value K :10·dimension− problem or even 50·dimension− problem. In case, where every fragment of the genotype iswithin value 〈0, 1〉, this value should be decreased.
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K value

Figure 8. Relation between population size K and ε value.

There where also some minor settings that may lead to the fast convergence. For example:
• λ modification - greatly increases convergence of the population. This method was described in [2]. At thismoment, accurate value of the λ parameter in unknown, so it was excluded from the parameters.
• mutation schema - Differential Evolution is the algorithm, which has several different mutation schemas that workbetter on selected problems.

We decided not to invole any additional settings, which may significantly affect the results of the experiments. Belowexperiments were computed for the arbitrarily selected problem, and every experiment was repeated 50 times. All testswere performed for the games where the number of strategies for the every player is equal to 3 - it gives us 6-dimensionalfunction.We considered population size in the range 〈10, 300〉. As it may be seen in Fig. 8, the lowest ε value was obtainedfor the K equal to 300. Higher number of individuals significantly improves algorithm convergence. On the other hand,large populations lengthen overall computation time. We used the same experiment, to define the largest acceptablecomputation time and results were presented on the Fig. 9.Desirable computation time, and the ε values were set to:
• ε < 0.15;
• time < 10s.

Above values were selected arbitrarily. In both cases, those values have been achieved for the K size equal to 100. Thisvalue is much lower than suggested in other articles. Interestingly, up to 300 individuals, time - population dependencyincreases almost linear. This assumption wasn’t tested for the larger population size, but above fact seems te be helpfulespecially for the significantly larger games, where number of strategies is larger than 3.The second important parameter is the CR . We tested different values in the range 〈0.1, 0.9〉 with step equal to 0.1.Results may be seen in Fig. 10. It is clear to see that small CR values give far more better results. Small CR valuesaffect on the convergence speed. Much of the trial individual genotype is rejected in favor of the parent individual.The last tuned parameter was mutation factor F . We tested different values in the range 〈0.05, 1.0〉 with step equal to0.05. As it may be seen in Fig. 11, the best results were obtained for the F > 0.5. F parameter should not be set tothe values greater than 0.8 - it significantly reduces the convergence in the final phase of the algorithm (the last fewhundreds iterations).Parameter tunning for the differential evolution algorithm was an important part of the experiments. According to ourknowledge, this article is the first approach to using differential evolution algorithm for computing the Nash Equilibria
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K value

Figure 9. Parameter tuning for the K - time dependency

Figure 10. Parameter tuning for the CR factor.

with known support. Parameter tunning for the above algorithm was the subject of many articles [27]. Our goal was toconfirm or reject proposed in the literature values. Values of the parameters F and CR , as expected, agree with thevalues proposed in the literature. An important conclusion is that the value of the parameter K should be significantlyreduced. The problem of computing the Nash equilibrium is very complex, but the search space is limited. It allows tosignificantly reduce the number of individuals in the initial population S.
6. Experiments
The aim of this research work is to determine if the differential evolution algorithm is capable to find and rate the setof optimal mixed strategies. The DE algorithm has the following parameters:
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Figure 11. Parameter tuning for the F .

• binomial crossover;
• crossover parameter CR = 0.5;
• mutation parameter F = 0.7;
• the population size K = 100;
• the number of differential vectors nv = 1.

For our experiments we used a 10 different random games with normalized payoffs generated with GAMUT [22]. It is astandard test suite used in game theory and it allows to generate different classes of games. The number of strategiesfor every player is equal to 3 - it gives us 6-dimensional function. In the Table 1 we present ε values for 10 differentgames. For every game, the algorithm was started 50 times, and results are averaged. As we can see, minimal error forevery game was smaller than 5% (distance from the exact Nash equilibrium). Results in column ”Maximum” may seemsweak, but only in a few examples such result was found. In the Section 2 we have mentioned a few algorithms, whichare capable to compute the worst case approximate Nash equilibrium, where ε is equal to 0.3393 and 0.5.In the Table 2 we can see percentage of runs (from 50 runs) in which solution better than fixed value (respectively ε lessthan 0.3, 0.2 and 0.1). As we can see, only small number of runs returned value worse than ε = 0.3. Opposite situationoccurs in the example 9 (Table 2), were only 4% of runs returned solution better than 10%. Games for the experimentswas chosen randomly, but some of them may be a little harder than the other. At this point, we can’t indicate propertiesof such difficult game.Finally, on the Fig. 12 we present quality of solutions for 10 different problems (averaged values from 50 runs). Mainly,this is graphical representation of first table with some added values - first and third quantile. It allows to see that theobtained results are very good, and average ε value is near 0.15.
7. Conclusions
The Differential Evolution (DE) was chosen out of all evolutionary algorithms (EAs) available, to speed up the execution,since the DE algorithm is one of the strongest approaches of all evolutionary algorithms. After the analysis of all testsets, the following conclusions may be reached: the Differential Evolutio was capable to solve every game (Table 1), andaverage ε was close to 0.15. Unlike mathematical methods, the proposed approach is capable to give different solutionsin every run of the algorithm.
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Table 1. Average, minimum, maximum, mean and standard deviation ε values for 10 different tested problems.

Game number Average ε Minimum ε Maximum ε Mean Standard deviationGame #1 16.5% 2.9% 35.4% 13.8% 8.3%Game #2 18.8% 3.2% 39.0% 18.4% 10.1%Game #3 19.0% 3.1% 42.4% 19.2% 9.7%Game #4 14.8% 2.3% 36.6% 12.4% 7.4%Game #5 13.3% 3.3% 46.1% 12.0% 8.7%Game #6 15.1% 4.2% 38.4% 13.5% 8.0%Game #7 18.3% 4.9% 45.4% 15.0% 9.4%Game #8 13.8% 2.4% 32.8% 11.9% 6.8%Game #9 20.5% 3.5% 35.4% 21.0% 7.3%Game #10 15.8% 2.1% 41.5% 13.9% 10.5%
Table 2. Percentage of runs, in which solution was better than fixed ε values equal to 0.3, 0.2 and 0.1.

Game number ε < 0.3 ε < 0.2 ε < 0.1Game #1 94% 68% 30%Game #2 78% 62% 24%Game #3 88% 56% 24%Game #4 96% 78% 20%Game #5 94% 90% 38%Game #6 94% 70% 24%Game #7 90% 52% 16%Game #8 94% 84% 36%Game #9 92% 40% 4%Game #10 90% 62% 36%

Figure 12. Quality of solutions for 10 different problems.

In this article we proposed and tested a new method for calculating ε-Nash equilibria in the bimatrix, non-zero sumgames. The new approach seems to be a good and simple alternative for existing solutions. Only for a few examples,reached solutions were not satisfactory.
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8. Future works
Our main goal is to develop a method which could be clearly compared with other algorithms for computing Nashequilibria. At this stage of the research, we where able to transform the problem to the clasical function optimizationproblem. This allows us to focus on the fitness function development. In this article we presented only results concerningthe basic differential evolution. Especially interesting seems to be comparison of different mutation schemas.One of our next goals is to determine properties of games which are difficult to solve for the differential evolutionalgorithm and modified approach. Of course, our main goal is to expand the scope of the proposed algorithm to thewhole class of non-zero sum random games. At this point, games with known support seems to be a serious limitation.All the considerations involved transforming the strategic form game into function optimization problem. The differentialevolutiom seems to be a very flexible algorithm. For example, special geometric operators were developed for discreteproblems. It’s worth to investigate whether it is possible to create mutation operator directed for the presented problem.
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