Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 26, 2014

Conceptual design of a selectable fractional-order differentiator for industrial applications

Emmanuel Gonzalez EMAIL logo , Ľubomír Dorčák , Concepción Monje , Juraj Valsa , Felicito Caluyo and Ivo Petráš

Abstract

In the past decade, researchers working on fractional-order systems modeling and control have been considering working on the design and development of analog and digital fractional-order differentiators, i.e. circuits that can perform non-integer-order differentiation. It has been one of the major research areas under such field due to proven advantages over its integer-order counterparts. In particular, traditional integer-order proportional-integral-derivative (PID) controllers seem to be outperformed by fractional-order PID (FOPID or PIλDμ) controllers. Many researches have emerged presenting the possibility of designing analog and digital fractional-order differentiators, but only restricted to a fixed order. In this paper, we present the conceptual design of a variable fractional-order differentiator in which the order can be selected from 0 to 1 with an increment of 0.05. The analog conceptual design utilizes operational amplifiers and resistor-capacitor ladders as main components, while a generic microcontroller is introduced for switching purposes. Simulation results through Matlab and LTSpiceIV show that the designed resistor-capacitor ladders can perform as analog fractional-order differentiation.

[1] G.E. Carlson, C.A. Halijak, Approximation of fractional capacitors (1/s)1/n by regular Newton process. IEEE Trans. Circuit Theory 11, No 2 (1964), 210–213. http://dx.doi.org/10.1109/TCT.1964.108227010.1109/TCT.1964.1082270Search in Google Scholar

[2] A. Charef, H.H. Sun, Y.Y. Tsao, B. Onaral, Fractal system as represented by singularity function. IEEE Trans. Automat. Control 37, No 9 (1992), 1465–1470. http://dx.doi.org/10.1109/9.15959510.1109/9.159595Search in Google Scholar

[3] Y.Q. Chen, I. Petráš, D. Xue, Fractional order control — a tutorial. In: Proc. Amer. Control Conference, St. Louis, Missouri (2009), 1397–1411. 10.1109/ACC.2009.5160719Search in Google Scholar

[4] L. Dorčák, E.A. Gonzalez, J. Terpák, I. Petráš, M. Žecová, Application of PID retuning methods for laboratory feedback control systems incorporation fractional-order dynamics. In: 14th Int. Carpathian Control Conference (ICCC 2013), Rytro, Poland, May 26–29 (2013), 38–42. http://dx.doi.org/10.1109/CarpathianCC.2013.656050710.1109/CarpathianCC.2013.6560507Search in Google Scholar

[5] L. Dorčák, J. Terpák, I. Petráš, J. Valsa, E. Gonzalez, Comparison of the electronic realization of the fractional-order system and its model. In: 13th Int. Carpathian Control Conference (ICCC 2012), High Tatras, Podbanske, Grand Hotel Permon, Slovak Republic, May 28–31 (2012), 119–124. http://dx.doi.org/10.1109/CarpathianCC.2012.622862710.1109/CarpathianCC.2012.6228627Search in Google Scholar

[6] L. Dorčák, J. Terpák, I. Petráš, J. Valsa, P. Horovčák, E. Gonzalez, Electronic realization of fractional-order system. In: Proc. Int. Multidisciplinary Scientific GeoConference (SGEM 2012), Albena Resort, Bulgaria, Jun. 17–23 (2012). Search in Google Scholar

[7] S.C. Dutta Roy, On the realization of a constant-argument immitance of fractional operator. IEEE Trans. Circuit Theory 14, No 3 (1967), 264–374. http://dx.doi.org/10.1109/TCT.1967.108270610.1109/TCT.1967.1082706Search in Google Scholar

[8] R.K.H. Galvo, S. Hadjiloucas, K.H. Kienitz, H.M. Paiva, R.J.M. Afonso, Fractional order modeling of large three-dimensional RC networks. IEEE Trans. Circuits and Syst. I, Regular Papers 60, No 3 (2013), 624–637. http://dx.doi.org/10.1109/TCSI.2012.220973310.1109/TCSI.2012.2209733Search in Google Scholar

[9] E.A. Gonzalez, L. Dorčák, C.B. Co, Bioelectrode models with fractional calculus. Int. J. Intelligent Control and Syst. 17, No 1 (2012), 7–13. Search in Google Scholar

[10] B.T. Krishna, Studies on fractional order differentiators and integrator: A survey. Signal Processing 91, No 9 (2011), 386–426. http://dx.doi.org/10.1016/j.sigpro.2010.06.02210.1016/j.sigpro.2010.06.022Search in Google Scholar

[11] B.T. Krishna, K. V. V. S. Reddy, Active and passive realization of fractance device of order 1/2. Active and Passive Electronic Components 2008 (2008), Article ID 369421, 5 pp.; DOI: 10.1155/2008/369421. 10.1155/2008/369421Search in Google Scholar

[12] B.T. Krishna, K. V. V. S. Reddy, Design of fractional order digital differentiators and integrators using indirect discretization, Fract. Calc. Appl. Anal. 11, No 2 (2008), 143–151; http://www.math.bas.bg/~fcaa. Search in Google Scholar

[13] P. Lanusse, J. Sabatier, PLC implementation of a CRONE controller. Fract. Calc. Appl. Anal. 14, No 4 (2011), 505–523; DOI: 10.2478/s13540-011-0031-7; http://link.springer.com/article/10.2478/s13540-011-0031-7. http://dx.doi.org/10.2478/s13540-011-0031-710.2478/s13540-011-0031-7Search in Google Scholar

[14] Linear Technology. LT1010 Fast ±150mA Power Buffer Datasheet, LT 0511 Rev. E, 1010fe. Search in Google Scholar

[15] Linear Technology. LT1013/LT1014 Quad Precision Op Amp (LT1014) Dual Precision Op Amp (LT1013) Datasheet, LT 0510 Rev. D, 10134fd. Search in Google Scholar

[16] R. Magin, Fractional Calculus in Bioengineering. Begell House, Inc., Connecticut (2006). Search in Google Scholar

[17] C.A. Monje, Y.Q. Chen, B.M. Vinagre, D. Xue, V. Feliu, Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, London (2010). http://dx.doi.org/10.1007/978-1-84996-335-010.1007/978-1-84996-335-0Search in Google Scholar

[18] K.B. Oldham, J. Spanier, The Fractional Calculus. Dover Publications, Inc., New York (2002). Search in Google Scholar

[19] A. Oustaloup, P. Lanusse, J. Sabatier, P. Melchior, CRONE control: Principles, extensions and applications. Journal of Applied Nonlinear Dynamics 2, No 3 (2013), 207–223. Search in Google Scholar

[20] A. Oustaloup, F. Levron, B. Mathieu, F.M. Nanot, Frequency band complex non integer differentiator: characterization and synthesis. IEEE Trans. Circuits and Syst. I, Fundam. Theory Appl. 47, No 1 (2000), 25–40. http://dx.doi.org/10.1109/81.81738510.1109/81.817385Search in Google Scholar

[21] A. Oustaloup, B. Mathieu, La Commande CRONE: du Scalaire au Multivariable. Hermes, Paris (1995). Search in Google Scholar

[22] I. Petráš, I. Podlubny, P. O’Leary, L. Dorčák, B.M. Vinagre, Analogue Realizations of Fractional Order Controllers. Faculty BERG, Technical University of Košice, Košice (2002). Search in Google Scholar

[23] I. Petráš, Tuning and implementation methods for fractional-order controllers. Fract. Calc. Appl. Anal. 15, No 2 (2012), 282–303; DOI: 10.2478/s13540-012-0021-4; http://link.springer.com/article/10.2478/s13540-012-0021-4. http://dx.doi.org/10.2478/s13540-012-0021-410.2478/s13540-012-0021-4Search in Google Scholar

[24] R. Plonsey, Bioelectric Phenomena. McGraw-Hill, New York (1969). Search in Google Scholar

[25] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999). Search in Google Scholar

[26] J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado, Advanced in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Netherlands (2007). http://dx.doi.org/10.1007/978-1-4020-6042-710.1007/978-1-4020-6042-7Search in Google Scholar

[27] S. Skale, S. Doleček, M. Slemnik, Substitution of the constant phase element by Warburg impedance for protective coatings. Corrosion Sci. 49, No 3 (2007), 1045–1055. http://dx.doi.org/10.1016/j.corsci.2006.06.02710.1016/j.corsci.2006.06.027Search in Google Scholar

[28] J. Valsa, P. Dvořák, M. Friedl, Network model of the CPE. Radioengineering 20, No 3 (2011), 619–626. Search in Google Scholar

[29] B. Vinagre, I. Podlubny, A. Hernandez, V. Feliu, Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3, No 3 (2000), 231–248. Search in Google Scholar

[30] J.C. Wang, Realizations of generalized Warburg impedance with RC ladder networks and transmission lines. J. Electrochem. Soc. 34, No 8 (1987), 1915–1920. http://dx.doi.org/10.1149/1.210078910.1149/1.2100789Search in Google Scholar

[31] D. Xue, C.N. Zhao, Y.Q. Chen, A modified approximation method of fractional order systems. In: Proc. IEEE Conf. on Mechatronics and Automation, Luoyang, China (2006), 1043–1048. 10.1109/ICMA.2006.257769Search in Google Scholar

Published Online: 2014-6-26
Published in Print: 2014-9-1

© 2014 Diogenes Co., Sofia

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 1.2.2023 from https://www.degruyter.com/document/doi/10.2478/s13540-014-0195-z/html
Scroll Up Arrow