Abstract
Let P ∈ ℂmxm and Q ∈ ℂn×n be invertible matrices partitioned as P = [P0 P1 · · · Pk−1] and Q = [Q0 Q1 · · · Qk−1], with P ℓ ∈ ℂm×mℓ and Qℓ ∈ ℂn×nℓ , 0 ≤ ℓ ≤ k − 1. Partition P−1 and Q−1 as

where P̂ℓ ∈ ℂmℓ ×m, Q̂ℓ ∈ ℂnℓ×n , P̂ℓPm = δℓmImℓ , and Q̂ℓQm = δℓmInℓ , 0 ≤ ℓ, m ≤ k − 1. Let Zk = {0, 1, . . . , k − 1}. We study matrices A =
Pσ(ℓ)FℓQℓ and B =
QℓGℓPσ(ℓ), where σ : Zk → Zk. Special cases: A =
and B =
, where Aℓ ∈ ℂd1×d2 and Bℓ ∈ ℂd2×d1, 0 ≤ ℓ ≤ k − 1.
References
[1] C. M. Ablow, J. L. Brenner, Roots and canonical forms for circulant matrices, Trans. Amer. Math. Soc. 107 (1963) 360-376.10.1090/S0002-9947-1963-0155841-7Search in Google Scholar
[2] A. L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl. 7 (1973) 151-162.10.1016/0024-3795(73)90049-9Search in Google Scholar
[3] A. L. Andrew, Solution of equations involving centrosymmetric matrices, Technometrics 15 (1973) 405-407.10.1080/00401706.1973.10489052Search in Google Scholar
[4] A. L. Andrew, Centrosymmetric matrices, SIAM Rev. 40 (1998) 697-698.10.1137/S0036144597328341Search in Google Scholar
[5] A. Cantoni, F. Butler, Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl. 13 (1976), 275-288.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000314854900031&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/0024-3795(76)90101-4Search in Google Scholar
[6] H.-C. Chen, A. Sameh, A matrix decomposition method for orthotropic elasticity problems, SIAM J. Matrix Anal. Appl. 10 (1989), 39-64.10.1137/0610004Search in Google Scholar
[7] H.-C. Chen, Circulative matrices of degree ϴ, SIAM J. Matrix Anal. Appl. 13 (1992) 1172-1188.10.1137/0613072Search in Google Scholar
[8] A. R. Collar, On centrosymmetric and centroskew matrices, Quart. J. Mech. Appl. Math. 15 (1962) 265-281.10.1093/qjmam/15.3.265Search in Google Scholar
[9] D. Fasino, Circulative properties revisited: Algebraic properties of a generalization of cyclic matrices, Ital. J. Pure Appl. Math 4 (1998) 33-43.Search in Google Scholar
[10] I. J. Good, The inverse of a centrosymmetric matrix, Technometrics 12 (1970) 925-928.10.1080/00401706.1970.10488743Search in Google Scholar
[11] G. L. Li, Z. H. Feng, Mirrorsymmetric matrices, their basic properties, and an application on odd/even decomposition of symmetric multiconductor transmission lines, SIAM J. Matrix Anal. Appl. 24 (2002) 78-90.10.1137/S0895479801393824Search in Google Scholar
[12] D. Tao, M. Yasuda, A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices, SIAM J. Matrix Anal. Appl. 23 (2002) 885-895.10.1137/S0895479801386730Search in Google Scholar
[13] W. F. Trench, Characterization and properties of matrices with generalized symmetry or skew symmetry, Linear Algebra Appl. 377 (2004) 207-218.10.1016/j.laa.2003.07.013Search in Google Scholar
[14] W. F. Trench, Characterization and properties of (R, S)-symmetric, (R, S)-skew symmetric, and (R, S)-conjugate matrices, SIAM J. Matrix Anal. Appl. 26 (2005) 748-757.10.1137/S089547980343134XSearch in Google Scholar
[15] W. F. Trench, Characterization and properties of matrices with k-involutory symmetries, Linear Algebra Appl. 429, Issues 8-9 (2008) 2278-2290.Search in Google Scholar
[16] W. F. Trench, Properties of unilevel block circulants, Linear Algebra Appl. 430 (2009) 2012-2025.10.1016/j.laa.2008.11.006http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000264864400010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Search in Google Scholar
[17] W. F. Trench, Characterization and properties of matrices with k-involutory symmetries II, Linear Algebra Appl. 432, (2010) 2282-2797.Search in Google Scholar
[18] Characterization and properties of (R, S_) commutative matrices. Linear Algebra Appl. 436 (2012) 4261-4278.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000303133700012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Search in Google Scholar
[19] M. Yasuda, A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices SIAM J. Matrix Anal. Appl. 23 (2001/02) 885-895.10.1137/S0895479801386730Search in Google Scholar
[20] M. Yasuda, A spectral characterization of Hermitian centrosymmetric and Hermitian skew-centrosymmetric K-matrices; SIAM J. Matrix Anal. Appl., 25 (2003) 601-605.10.1137/S0895479802418835Search in Google Scholar
[21] J. R. Weaver, Centrosymmetric (cross) matrices, their basic properties, eigenvalues, and eigenvectors, Amer. Math. Monthly 92 (1985) 711-717. 10.2307/2323222Search in Google Scholar
© 2014 Minghua Lin and Harald K. Wimmer
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.