Skip to content
Open Access Published by De Gruyter Open Access December 14, 2012

Compilation of the regional quasigeoid model for New Zealand using the discretised integral-equation approach

  • A. Abdalla EMAIL logo and R. Tenzer

Abstract

We evaluate the new regional quasigeoid model (OTG12) for New Zealand using the method which utilises the discretised integral equation approach for computing the near-zone contribution. The far-zone contribution is computed by modified spherical harmonics of the geopotential. Adopting the remove-compute-restore computation scheme, the near- and far-zone contributions are computed for the residual height anomalies, while the reference height anomalies are evaluated using a global gravitational model. For the numerical realisation, the GOCO-02S coefficients complete to degree 55 of spherical harmonics are used to generate the reference gravity field. The 1×1 arc-min grid data of terrestrial gravity anomalies are used to compute the near-zone contribution. The far-zone contribution is evaluated using the EGM2008 coefficients at the frequency bound between degrees 56 and 2160 of spherical harmonics. The newly-adjusted levelling data are used to validate the available regional geoid/quasigeoid models. The accuracy assessment of gravimetric solutions at GNSS-levelling testing network reveals that the accuracy of OTG12 is compatible with the existing regional geoid/quasigeoid models; the standard deviation (STD) of residuals between the geometric and gravimetric height anomalies is 13 cm (after applying the 3-parameter correction model).


E-mail: ahmed.abdalla@otago.ac.nz; Tel.: +64 3 479 7592; Fax: +64 3 479 7586

References

Abdalla A. and Tenzer R., 2011, The evaluation of the New Zealand’s geoid model using the KTH method, Geod. & Carto., 37, 1, 5-14.10.3846/13921541.2011.558326Search in Google Scholar

Abdalla A. and Tenzer R., 2012, The global geopotential and regional gravimetric geoid/quasigeoid models testing using the newly adjusted levelling dataset for New Zealand, J App. Geom., DOI: 10.1007/s12518-012-0089-x.10.1007/s12518-012-0089-xSearch in Google Scholar

Amos M.J. and Featherstone W.E., 2009, Unification of New Zealand’s local vertical datums: iterative gravimetric quasigeoid computations, J Geod., 83, 57-68.10.1007/s00190-008-0232-ySearch in Google Scholar

Andersen O.B., Knudsen P. and Berry P., 2009, The DNSC08GRA global marine gravity field from double retraced satellite altimetry, J Geod., 84, 191-199.10.1007/s00190-009-0355-9Search in Google Scholar

Ågren J., Sjöberg L.E. and Kiamehr R., 2009, Computation of the gravimetric geoid model over Sweden using the KTH method, J Appl. Geod., 3, 143-153.10.1515/JAG.2009.015Search in Google Scholar

Blick G., Crook C. and Grant D., 2005, Implementation of a semi-dynamic datum for New Zealand, In: Sansò F (ed) A Window on the Future of Geodesy, Springer, Berlin, Germany, pp 38-43. Burša M., Kenyon S., Kouba J., Šíma Z., Vatrt V., Vítek V. and Vojtíšková M., 2007, The geopotential value W0 for specifying the relativistic atomic time scale and a global vertical reference system, J Geod., 81, 2, 103-110.10.1007/s00190-006-0091-3Search in Google Scholar

Claessens S., Hirt C., Amos, M.J., Featherstone W.E. and Kirby J.F., 2011, NZGeoid09 quasigeoid model of New Zealand, Surv. Rev., 43, 319, 2-15.10.1179/003962610X12747001420780Search in Google Scholar

Columbus J., Sirguey P. and Tenzer R., 2011, A free, fully assessed 15-m DEM for New Zealand, Surv. Quarte., 66, 16-19.Search in Google Scholar

Čunderlík R., Mikula K. and Mojzeš M., 2008, Numerical solution of the linearised fixed gravimetric boundary-value10.1007/s00190-007-0154-0Search in Google Scholar

problem, J Geod., 82, 15-29.Search in Google Scholar

Čunderlík R. and Mikula K., 2009, Direct BEM for high-resolution global gravity field modelling, Stud. Geoph. Geod., 54, 219-238.10.1007/s11200-010-0011-0Search in Google Scholar

Dayoub N., Edwards S.J. and Moore P., 2012, The Gauss- Listing geopotential value W0 and its rate from altimetric mean sea level and GRACE, J Geod., DOI:10.1007/s00190-012- 0547-6.Search in Google Scholar

Goiginger H., Hoeck E., Rieser, D., Mayer-Guerr T., Maier A., Krauss S., Pail R., Fecher T., Gruber T., Brockmann J.M., Krasbutter I., Schuh W.D., Jaeggi A., Prange L., Hausleitner W., Baur O. and Kusche J., 2011, The combined satellite-only global gravity field model GOCO02S, Geophys. Res. Abstr., 13, EGU2011-10571.Search in Google Scholar

Heiskanen W.H. and Moritz H., 1967, Physical geodesy. WH Freeman and Co, San Francisco.10.1007/BF02525647Search in Google Scholar

Kotsakis C. and Sideris M.G., 1999, On the adjustment of combined GPS/levelling/geoid networks, J Geod., 73, 412-421.10.1007/s001900050261Search in Google Scholar

Molodensky M.S., Yeremeev V.F. and Yurkina M.I., 1960, Methods for Study of the Externa lGravitational Field and Figure of the Earth. TRUDY Ts NIIGAiK, 131, Geodezizdat, Moscow (English translat.: Israel Program for Scientific Translation, Jerusalem 1962).Search in Google Scholar

Moritz H., 1980, Advanced Physical Geodesy, Wichmann, Karlsruhe.Search in Google Scholar

Novák P., 2003, Geoid determination using one-step integration, J Geod., 77, 193-206.10.1007/s00190-003-0314-9Search in Google Scholar

Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2008, The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res., 117, B04406, DOI:10.1029/2011JB008916.10.1029/2011JB008916Search in Google Scholar

Sanchez L., 2007, Definition and realisation of the SIRGAS vertical reference system within a globally unified height system, In: Dynamic Planet: Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools, 130, 638-645.10.1007/978-3-540-49350-1_92Search in Google Scholar

Sjöberg L.E., 1991, Refined least squares modification of Stokes formula, Manus. Geod., 16, 367-375.Search in Google Scholar

Sjöberg L.E., 2003, A general model of modifying Stokes formula and its least squares solution, J Geod., 77, 459-464.10.1007/s00190-003-0346-1Search in Google Scholar

Sjöberg L.E., 2003, A solution to the downward continuation effect on the geoid determined by Stokes formula, J Geod., 77, 94-100.10.1007/s00190-002-0306-1Search in Google Scholar

Sjöberg L.E., 2003, Improving modified Stokes formula by GOCE data, Boll. Geod. Sci. Aff., 61, 3, 215-225.Search in Google Scholar

Sjöberg L.E., 2003, A computational scheme to model geoid by the modified Stokes formula without gravity reductions, J10.1007/s00190-003-0338-1Search in Google Scholar

Geod., 74, 255-268.Search in Google Scholar

Santos M.C., Vaníček P., Featherstone W.E., Kingdon R., Ellmann A., Martin B.-A., Kuhn M. and Tenzer R., 2006, The relation between rigorous and Helmert’s definitions of orthometric heights, J Geod., 80, 691-704.10.1007/s00190-006-0086-0Search in Google Scholar

Tenzer R., 2008, On the accuracy assessment of input gravity data in local gravity field modelling, Contr. Geophys. & Geod., 38, 2, 133-149.Search in Google Scholar

Tenzer R. and Klees R., 2008, The choice of the spherical radial basis functions in local gravity field modelling, Stud. Geophys. Geod., 52, 287-304.10.1007/s11200-008-0022-2Search in Google Scholar

Tenzer R., Novák, P., 2008, Conditionality of inverse solutions to discretized integral equations in geoid modelling from local gravity data, Stud. Geophys. Geod., 52, 53-70.10.1007/s11200-008-0005-3Search in Google Scholar

Tenzer R., Novák P., Prutkin I., Ellmann A. and Vajda, P., 2009, Far-zone contributions to the gravity field quantities by means of Molodensky’s truncation coefficients, Stud. Geophys. Geod., 53, 157-167.10.1007/s11200-009-0010-1Search in Google Scholar

Tenzer R., Novák P., Vajda P., Ellmann A. and Abdalla A., 2011a, Far-zone gravity field contributions corrected for the effect of topography by means of Molodensky’s truncation coefficients, Stud. Geophys. Geod., 55, 55-71.10.1007/s11200-011-0004-7Search in Google Scholar

Tenzer R., Vatrt V., Luzi G., Abdalla A. and Dayoub N., 2011b, Combined approach for the unification of levelling networks in New Zealand, J Geod Sci., 1, 4, 324-33210.2478/v10156-011-0012-0Search in Google Scholar

Tenzer R., Čunderlík R., Dayoub N. and Abdalla A., 2012a, Application of the BEM approach for a determination of the regional marine geoid model and the mean dynamic topography in the Southwest Pacific Ocean and Tasman Sea, J Geod. Sci., 2, 1, 1-710.2478/v10156-011-0019-6Search in Google Scholar

Tenzer R., Klees R. and Prutkin I., 2012b, A comparison of different integral-equation-based approaches for local gravity field modelling - Case study for the Canadian Rocky Mountains, pp. 381-388, In: Kenyon, Steve; Pacino, Maria Christina; Marti, Urs (Eds.): Geodesy for Planet Earth: Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentina, 31 August - 4 September 2009, In book series: IAG Symposia, Vol. 136, 1046 p, ISBN 978-3-642-20337-4, Springer Berlin Heidelberg, (WOS), DOI: 10.1007/978-3-642-20338-1_46.10.1007/978-3-642-20338-1_46Search in Google Scholar

Vaníček P. and Sjöberg L.E., 1991, Reformulation of Stokes’s theory for higher than second-degree reference field and a modification of integration kernels, J Geophys. Res., 96, B4, 6529-6539.10.1029/90JB02782Search in Google Scholar

Young D., 1971, Iterative solutions of large linear systems, New York, Academic press.Search in Google Scholar

Search in Google Scholar

Published Online: 2012-12-14
Published in Print: 2012-11-1

This content is open access.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/v10156-011-0041-8/html
Scroll to top button