Kurzfassung
Um die Energieeffizienz von Maschinen zu steigern, ist eine Kenntnis des elektrischen Energieverbrauchs auf Komponentenebene notwendig. Dazu wird normalerweise an jeder Komponente ein Messsensor installiert, was jedoch hohe Hardware- und Installationskosten verursacht. Eine alternative Messmethode ist das sogenannte Non-intrusive Load Monitoring, welches in Privathaushalten bereits erfolgreich eingesetzt wird. In diesem Beitrag wird untersucht, wie geeignet die Methode für in der Fertigungsindustrie eingesetzte Maschinen ist.
Abstract
In order to increase the energy efficiency of machines, knowledge about the electricity consumption of the machine components is necessary. Therefore a measurement sensor is installed at each component usually, which results in high hardware and installation costs though. An alternative measurement method is the so called non-intrusive load monitoring, which has already been successfully applied in private homes. In this paper it is analyzed, in how far the method can be applied to manufacturing machines.
References
1. Zeifman, M.; Akers, C.; Roth, K.: Nonintrusive Appliance Load Monitoring (NIALM) for Energy Control in Residential Buildings: Review and Outlook. International Conference on Consumer Electronics, Las Vegas, 10 January 201110.1109/ICCE.2011.5722560Search in Google Scholar
2. Zoha, A.; Gluhak, A.; Imran, M.A.: Rajasegarar, S.: Non-intrusive Load Monitoring Approaches for Disaggregated Energy Sensing: A Survey. Sensors12 (2012) 12, S. 16838–1686610.3390/s121216838Search in Google Scholar PubMed PubMed Central
3. Adabi, A.; Mantey, P.; Holmegaard, E.; Kjaergaard, M.B.: Status and Challenges of Residential and Industrial Non-intrusive Load Monitoring. In: IEEE Conference on Technologies for Sustainability (SusTech), July 30-August 1 2015, S. 181–18810.1109/sustech.2015.7314344Search in Google Scholar
4. Egarter, D.; Bhuvana, V. P.; Elmenreich, W.: PALDi: Online Load Disaggregation via Particle Filtering. IEEE Transactions on Instrumentation and Measurement64 (2015) 2, S. 467–47710.1109/TIM.2014.2344373Search in Google Scholar
5. Ducange, P.; Marcelloni, F.; Antonelli, M.: A Novel Approach Based on Finite-state Machines with Fuzzy Transitions for Nonintrusive Home Appliance Monitoring. IEEE Transactions on Industrial Informatics10 (2014) 2, S. 1185–119710.1109/TII.2014.2304781Search in Google Scholar
6. Sultanem, F.: Using Appliance Signatures for Monitoring Residential Loads at Meter Panel Level. IEEE Transactions on Power Delivery6 (1991) 4, S. 1380–138510.1109/61.97667Search in Google Scholar
7. Laughman, C.; Lee, K.; Cox, R.; Shaw, S.; Leeb, S.; Norford, L.; Armstrong, P.: Power Signature Analysis. IEEE Power and Energy Magazine1 (2003) 2, S. 56–6310.1109/MPAE.2003.1192027Search in Google Scholar
8. Wichakool, W.; Remscrim, Z.; Orji, U. A.; Leeb, S. B.: Smart Metering of Variable Power Loads. IEEE Transactions on Smart Grid6 (2015) 1, S. 189–19810.1109/TSG.2014.2352648Search in Google Scholar
© 2016, Carl Hanser Verlag, München