Kurzfassung
Beim Einsatz von Mikrofräswerkzeugen kommt es, bedingt durch Größeneffekte, zu erhöhter Reibung und damit erhöhtem Verschleiß. Zusätzlich resultieren aus den geringen Werkzeugdurchmessern niedrige Schnittgeschwindigkeiten, sodass es zu Aufbauschneiden kommen kann. Beides wirkt sich negativ auf die Prozessergebnisgrößen aus und reduziert die Effizienz des Prozesses. Um dies zu minimieren, wurden Mikrofräswerkzeuge (Ø 50 μm) mit einer PVD-Beschichtung versehen und das Einsatzverhalten untersucht.
Abstract
The application of micro tools results in high friction and tool wear due to size effects. Another aspect are the low achievable cutting speeds (limited due to the low tool diameters). Depending on the tool-workpiece combination, this can lead to build up edge formation. Those negative influences decrease machining efficiency and machining results. In this paper, micro tools (Ø 50 μm) were coated via PVD and the machining results of coated and uncoated tools were compared.
References
1. Dornfeld, D.; Min, S.; Takeuchi, Y.: Recent Advances in Mechanical Micromachining. CIRP Annals–Manufacturing Technology55 (2006) 2, S. 745–768. 10.1016/j.cirp.2006.10.006Search in Google Scholar
2. Thepsonthi, T.: Modeling and Optimization of Micro-end Milling Process for Micro-manufacturing. Dissertation, The State University of New Jersey, 2014Search in Google Scholar
3. Bobzin, K.: High-performance Coatings for Cutting Tools. CIRP Journal of Manufacturing Science and Technology18 (2016), S. 1–9. 10.1016/j.cirpj.2016.11.004Search in Google Scholar
4. Prengel, H. G.; Pfouts, W. R.; Santhanam, A. T.: State of the Art in Hard Coatings for Carbide Cutting Tools. Surface and Coatings Technology102 (1998) 3, S. 183–190. 10.1016/S0257-8972(96)03061-7Search in Google Scholar
5. Peterman, D. J.: Formation of an Insitu Diffusion Barrier while Diffusing Aluminum through Boron-enriched Nickel. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films14 (1996) 3, S. 768–771. 10.1116/1.580386Search in Google Scholar
6. Williams, R. K.; Graves, R. S.; Weaver, F. J.: Transport Properties of High Purity, Polycrystalline Titanium Diboride. Journal of Applied Physics59 (1986) 5, S. 1552–1556. 10.1063/1.336463Search in Google Scholar
7. Ramberg, J. R.; Williams, W. S.: High Temperature Deformation of Titanium Diboride. Journal of Materials Science22 (1987) 5, S. 1815–1826. 10.1007/BF01132411Search in Google Scholar
8. Prengel, H.; Jindal, P.; Wendt, K.; Santhanam, A.; Hegde, P.; Penich, R.: A New Class of High Performance PVD Coatings for Carbide Cutting Tools. Surface and Coatings Technology139 (2001) 1, S. 25–34. 10.1016/S0257-8972(00)01080-XSearch in Google Scholar
9. Aurich, J. C.; Reichenbach, I. G.; SchuelerG. M.: Manufacture and Application of Ultra-small Micro end Mills. CIRP Annals-Manufacturing Technology61 (2012) 1, S. 83–8610.1016/j.cirp.2012.03.012Search in Google Scholar
10. Aurich, J. C.; Bohley, M.; Reichenbach, I. G.; Kirsch, B.: Surface Quality in Micro Milling: Influences of Spindle and Cutting Parameters. CIRP Annals-Manufacturing Technology66 (2017) 1, S. 101–104. 10.1016/j.cirp.2017.04.029Search in Google Scholar
11. Reichenbach, I. G.; Bohley, M.: Micromachining of CP-Titanium on a Desktop Machine – Study on Bottom Surface Quality in Micro End Milling. Advanced Materials Research769 (2013), S. 53–60. 10.4028/www.scientific.net/AMR.769.53Search in Google Scholar
© 2017, Carl Hanser Verlag, München