Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 20, 2020

Die Natur als Inspiration

Die Rolle der biologischen Transformation zur zukünftigen Gestaltung von Produktionssystemen

Nature as Inspiration
Role of Biological Transformation in the Future design of Manufacturing Systems
  • Dominik T. Matt , Michael Riedl and Erwin Rauch

Kurzfassung

Das Paradigma der biologischen Transformation besteht darin sich die Natur als Vorbild für technische Systeme zu nehmen. Diesem Ansatz wird großes Potenzial zugeschrieben, neue und innovative Lösungsansätze für die Produktionssysteme in der Fabrik der Zukunft zu generieren. Es stellt sich in der Praxis jedoch die Frage, wie Unternehmen von diesem Ansatz am besten profitieren können und welchen Handlungsempfehlungen sie konkret folgen sollen.

Abstract

The paradigm of biological transfor-mation is to take nature as a model for technical systems. This approach has great potential to generate new and innovative solutions for manufacturing systems in the factory of the future. In practice, however, the question arises as to how companies can best benefit from this approach and which recommendations for action they should concretely follow.


Univ.-Prof. Dr.-Ing. Dominik T. Matt ist Inhaber des Lehrstuhls für Produktionssysteme an der Freien Universität Bozen, Managing Partner der Unternehmensberatung Matt & Partner sowie Leiter der ersten italienischen Fraunhofer Niederlassung, des Fraunhofer Italia Innovation Engineering Centers (IEC) in Bozen.

Dr.-Ing. Michael Riedl ist stellvertretender Leiter des Fraunhofer Italia Innovation Engineering Center und verantwortet den Forschungsbereich Automation and Mechatronics Engineering.

Dr.-Ing. Dipl.-Wirtsch.-Ing. Erwin Rauch ist Juniorprofessor für Produktionssysteme an der Freien Universität Bozen.


Literatur

1. Matt, D. T.; Rauch, E.: Implementing Lean in Engineer-to-Order Manufacturing: Experiences from a ETO Manufacturer. In: Handbook of Research on Design and Management of Lean Production Systems. IGI Global, Hershey2014, S. 14817210.4018/978-1-4666-5039-8.ch008Search in Google Scholar

2. Matt, D. T.: Design of Lean Manufacturing Support Systems in Make-to-Order Production. Key Engineering Materials410 (2009), S. 15115810.4028/www.scientific.net/KEM.410-411.151Search in Google Scholar

3. Dallasega, P.; Rauch, E.; Matt, D. T.: Sustainability in the Supply Chain through Synchronization of Demand and Supply in ETO-Companies. Procedia CIRP29 (2015), S. 21522010.1016/j.procir.2015.02.057Search in Google Scholar

4. Rauch, E.; Linder, C.; Dallasega, P.: Anthropocentric Perspective of Production before and within Industry 4.0. Computers & Industrial Engineering139 (2019), 105644 10.1016/j.cie.2019.01.018Search in Google Scholar

5. Neugebauer, R.: Biologische Transformation. Springer-Vieweg-Verlag, Wiesbaden201910.1007/978-3-662-58243-5Search in Google Scholar

6. Miehe, R. et al.: The Biological Transformation of the Manufacturing Industry – Envisioning Biointelligent Value Adding. 51st CIRP Conference on Manufacturing Systems, Procedia CIRP71 (2018), S. 73974310.1016/j.procir.2018.04.085Search in Google Scholar

7. van Brussel, H.; Valckenaers, P.: Design of Holonic Manufacturing Systems. Journal of Machine Engineering17 (2017) 3, S. 523Search in Google Scholar

8. Byrne, G. et al.: Biologicalisation: Biological Transformation in Manufacturing. CIRP Journal of Manufacturing Science and Technology21 (2018). S. 13210.1016/j.cirpj.2018.03.003Search in Google Scholar

9. Benyus, J. M.: Biomimicry: Innovation Inspired by Nature. Harper Collins Publishers Inc., New York2002Search in Google Scholar

10. Valkenaers, P.; van Brussel, V.: Holonic Manufacturing Execution Systems. CIRP Annals – Manufacturing Technology54 (2005) 1, S. 42743210.1016/S0007-8506(07)60137-1Search in Google Scholar

11. Steele, J. E. How Do We Get There? In: Bionics Symposium: Living Prototypes – The Key to New Technology, September 13–15, 1960, WADD Technical Report 60–600, Wright Air Development Division, Wright-Patterson Air Force Base, OH, 1960, S. 488489Search in Google Scholar

12. Tan, R.; Liu, W.; Cao, G.; Shi, Y.: Creative Design Inspired by Biological Knowledge: Technologies and Methods. Frontiers of Mechanical Engineering14 (2019) 1, S. 11410.1007/s11465-018-0511-0Search in Google Scholar

13. Shu, L. H.; Ueda, K.; Chiu, I.; Cheong, H.: Biologically inspired Design. CIRP Annals – Manufacturing Technology60 (2011) 2, S. 67369310.1016/S0007-8506(11)00183-1Search in Google Scholar

14. Dieckhoff, P.; Möhlmann, R.; van Ackeren, J.: Biologische Transformation und Bioökonomie (White Paper). Fraunhofer Verlag, Stuttgart201810.1007/978-3-662-58243-5_2Search in Google Scholar

15. Patermann, C: Innovation, Wachstum, Bioökonomie – Europa wird sich sputen müssen, um in der Umsetzung der Bioökonomie im industriellen Maßstab mitzuhalten (2017). Online unter https://www.brain-biotech.de/content/blickwin-kel/1314q2_growth/1314_q2_Wachstum_Patermann.pdf [Letzter Zugriff am 08.11.2019]Search in Google Scholar

16. Bauernhansl, T.: Die biointelligente Wertschöpfung (2019). Oline unter https://www.iao.fraunhofer.de/images/iao-news/bio-intelligenz.pdf [Letzter Zugriff am 08.11.2019]Search in Google Scholar

17. Yang, G. Z. et al: The Grand Challenges of Science Robotics. Science Robotics3 (2018) 14, eaar7650 10.1126/scirobotics.aar7650Search in Google Scholar PubMed

18. Assmus, H. E. et al.: Dynamics of Biological Systems: Role of Systems Biology in Medical Research. Expert Review of Molecular Diagnostics6 (2006) 6, S. 89190210.1586/14737159.6.6.891Search in Google Scholar PubMed

Online erschienen: 2020-03-20
Erschienen im Druck: 2020-03-27

© 2020, Carl Hanser Verlag, München

Downloaded on 26.9.2023 from https://www.degruyter.com/document/doi/10.3139/104.112235/html
Scroll to top button