Kurzfassung
Im Internet der Dinge sind Prozesse, durch den ständig wechselnden und nicht kontrollierbaren realen Ausführungskontext, unweigerlich mit a priori unbekannten Eingangsgrößen konfrontiert. Das Forschungsprojekt RESPOND untersucht daher Methoden und Werkzeuge zur Modellierung und Ausführung von resilienten Prozessen im Internet der Dinge, um ein flexibles und dynamisches Produktionssystem im industriellen Internet der Dinge zu schaffen, das seinen Zustand selbst überwacht und auf Fehler und Probleme reagieren kann.
Abstract
In the Internet of Things processes are inevitably confronted with unknown input variables due to the ever-changing and uncontrollable real execution context. The research project RESPOND investigates methods and tools for modeling and executing processes in the Internet of Things in order to create a flexible and dynamic production system in the industrial Internet of Things that can monitor its own condition and respond to errors and problems.
Literatur
1. Broy, M.: Cyber-Physical Systems: Innovation durch softwareintensive eingebettete Systeme. Springer-Verlag, Berlin, Heidelberg201010.1007/978-3-642-14901-6Search in Google Scholar
2. Kühn, R.; Keller, C.; Schlegel, T: A Context Taxonomy Supporting Public System Design. In: Proceedings of the 1st International Workshop on Model-based Interactive Ubiquitous Systems, EICS‘11, 2011Search in Google Scholar
3. Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D.: Context Aware Computing for The Internet of Things: A Survey. First Quarter 2014, S. 414–45410.1109/SURV.2013.042313.00197Search in Google Scholar
4. Ejigu, D.; Scuturici, M.; Brunie, L.: An Ontology-Based Approach to Context Modeling and Reasoning in Pervasive Computing. In: Proceedings of the 5th Annual IEEE International Conference on White Plains. Pervasive Computing and Communications Workshops, NY, PerCom Workshops, 07. 2007, S. 14–1910.1109/PERCOMW.2007.22Search in Google Scholar
5. Chen, Y. S.; Chen, Y. R.: Context-Oriented Data Acquisition and Integration Platform for Internet of Things. In: Proceedings of the Conference on Technologies and Applications of Artificial Intelligence, Tainan, 2012, S. 103–10810.1109/TAAI.2012.64Search in Google Scholar
6. Nardelli, M.; Nastic, S.; Dustdar, S.; Villari, M.; Ranjan, R.: Osmotic Flow: Osmotic Computing+ IoT Workflow. IEEE Cloud Computing4 (2017) 2, S. 68–7510.1109/MCC.2017.22Search in Google Scholar
7. Kim, S. D.; Lee, J. Y.; Kim, D. Y.; Park, C. W.; La, H. J.: Modeling Bpel-based Collaborations with Heterogeneous IoT Devices. In: Proceedings of the EEE 12th International Conference on Dependable, Autonomic and Secure Computing (DASC), 2014, S. 289–29410.1109/DASC.2014.58Search in Google Scholar
8. Meyer, S. Ruppen, A.; Magerkurth, C.: Internet of Things-aware Process Modeling: Inte-grating IoT Devices as Business Process Resources. In: Proceedings of the International Conference on Advanced Information Systems Engineering. Springer-Verlag, Berlin, Heidelberg2013, S. 84–9810.1007/978-3-642-38709-8_6Search in Google Scholar
9. Huber, S.; Seiger, R.; Kühnert, A.; Schlegel, T.: A Context-adaptive Workflow Engine for Humans, Things and Services. In: Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, 201610.1145/2968219.2971369Search in Google Scholar
10. Seiger, R.; Huber, S.; Schlegel, T.: An Execution System for Self-healing Workflows in Cyber-physical Systems. In: Jürjens, J.; Schneider, K. (Hrsg.): Software Engineering. Gesellschaft für Informatik e. V., Bonn2017, S. 75Search in Google Scholar
11. Seiger, R.; Huber, S.; Schlegel, T.: Toward an Execution System for Self-healing Workflows in Cyber-Physical Systems. Software & Systems Modeling (2016) 5, S. 1–22Search in Google Scholar
12. Schlegel, T.: Object-Oriented Interactive Processes in Decentralized Production Systems. Conference Paper 200910.1007/978-3-642-02556-3_34Search in Google Scholar
13. Schlegel, T.; Thiel, S.: Semantic Models and Processes for Information Gathering and Interactive Workflow Execution in Decentralized Production Environments. In: Intelligent Production Machines and Systems – 3rd I∗PROMS Virtual International Conference (2007)Search in Google Scholar
14. Huber, S.; Seiger, R.; Kuehnert, A.; Schlegel, T.: Using Semantic Queries to Enable Dynamic Service Invocation for Processes in the Internet of Things. In: Proceedings of the Tenth International Conference on Semantic Computing (ICSC) 2016, IEEE, 201610.1109/ICSC.2016.75Search in Google Scholar
15. Huber, S.; Seiger, R.; Kühnert, A.; Theodorou, V.; Schlegel, T.: Goal-Based Semantic Queries for Dynamic Processes in the Internet of Things. International Journal of Semantic Computing10 (2016), S. 269–29310.1142/S1793351X16400109Search in Google Scholar
16. Razzaque, M. A.; Milojevic-Jevric, M.; Palade, A.; Clarke, S.: Middleware for Internet of Things: A Survey. IEEE Internet of Things Journal3 (2016) 1, S. 70–9510.1109/JIOT.2016.2516838Search in Google Scholar
© 2020, Carl Hanser Verlag, München