Kurzfassung
Aufgrund der hervorragenden Eigenschaften nitrierter Stähle ist der Einsatz dieser Technik von großem Interesse für verschiedenste industrielle Anwendungen. Große Erfolge konnten während der letzten Jahrzehnte auf dem Gebiet der Nitrierhärtung erzielt werden und neben mannigfaltigen Prozessausführungen zählt das Gasnitrieren heute zu den am häufigsten eingesetzten Verfahren für eine breite Palette an Stahlsorten.
Abstract
Due to the excellent properties of nitrided steels, this technique is of great interest for numerous industrial applications. Hence its development made great progress within the last decades and among different process variations, gas nitriding is frequently used for a wide range of steel grades.
Literatur
1. Van Wiggen, P. C.; Rozendaal, H. C. F.; Mittemeijer, E. J.: The nitriding behaviour of iron-chromium-carbon alloys. J. Mater. Sci.20 (1985) 12, S. 4561–4582Search in Google Scholar
2. Spies, H.-J.; Schaaf, P.; Vogt, F.: Influence of oxygen additions during gas nitriding on the structure of the nitrided layers. Matwiss. u. Werkstofftech.29 (1998) 10, S. 588–594Search in Google Scholar
3. Jentzsch, W. D.; Böhmer, S.: Investigations on Nitride Layer Formation at the Iron Surface during Gas Nitriding. Kristall und Technik14 (1979) 5, S. 617–624Search in Google Scholar
4. Funatani, K.: Low-temperature salt bath nitriding. Metal Science and Heat Treatment46 (2003) 7–8, S. 277–281Search in Google Scholar
5. Menthe, E.; Rie, K. T.; Schultze, J. W.; Simson, S.: Structure and properties of plasma-nitrided stainless steel. Surf. Coat. Technol.74 (1995) 1–3, S. 412–416Search in Google Scholar
6. Liapina, T.; Leineweber, A.; Mittemeijer, E. J.: Phase Transformations in Iron-Nitride Compound Layers upon Low-Temperature Annealing: Diffusion Kinetics of Nitrogen in e- and g’-Iron Nitrides. Metall. Mater. Trans. A37 (2006) 2, S. 319–330Search in Google Scholar
7. Bader, M.; Spies, H. J.; Höck, K.; Broszeit, E.; Schröder, H. J.: Properties of duplex treated (gas-nitriding and PVD -TiN, -Cr2N) low alloy steel. Surf. Coat. Technol.98 (1998) 1–3, S. 891–89610.1016/S0257-8972(97)00312-5Search in Google Scholar
8. Liapina, T.; Leineweber, A.; Mittemeijer, E. J.: Nitrogen redistribution in e/g’-iron nitride compound layers upon annealing. Scr. Mater.48 (2003) 12, S. 1643–1648Search in Google Scholar
9. Spies, H. J.; Biermann, H.; Fischer, A.: Nitriding behaviour of the intermetallic alloy FeAl. Z. Metallkd.96 (2005) 7, S. 781–786Search in Google Scholar
10. Berns, H.; Kühl, A.: Reduction in wear of sewage pump through solution nitriding. Wear256 (2004) 1–2, S. 16–20Search in Google Scholar
11. Somers, M. A. J.: Modelling nitriding of iron: From thermodynamics to residual stress. J. Physique IV120 (2004), S. 21–33Search in Google Scholar
12. Mehrer, H.: Landolt-Börnstein — Diffusion in Solid Metals and Alloys. Springer, Berlin, 199010.1007/b37801Search in Google Scholar
13. Auinger, M.; Naraparaju, R. S.; Christ, H. J.; Rohwerder, M.: Modelling High Temperature Oxidation in Iron-Chromium Systems — Combined Kinetic and Thermodynamic Calculation of the Long-Term Behaviour and Experimental Verification. Oxidation of Metals (2010) eingereicht10.1007/s11085-011-9252-8Search in Google Scholar
14. Larsson, H.; Ågren, J.: Gas Nitriding of High Vanadium Steels — Experiments and Simulations. Metall. Mater Trans. A35 (2004) 9, S. 2799–2802Search in Google Scholar
© 2011, Carl Hanser Verlag, München