Abstract
Conventional aluminising procedures are mostly conducted at temperatures well above 900 °C, and can last for hours. When applied to hot-work tool steels, aluminising has to be done at notably lower temperatures in order to prevent grain growth and carbide formation, and to improve creep resistance.
The kinetics of aluminium coating formation on hot-work tool steels was studied in the temperature range of 550–610 °C. The pack Al content was varied from 5–15 wt.-% and aluminising time from 1–9 hours. The halide activator AlCl3 was applied. A series of statistically designed experiments were conducted to determine how key process factors influence the aluminide coating formation. A Box-Behnken experimental design was used to evaluate three process factors at three levels. The microstructures of coated samples were analysed by a scanning electron microscope (SEM). Glow Discharge Optical Spectroscopy (GDOS) and energy-dispersive X-ray spectroscopy (EDX) were employed to investigate element distributions in the coating layer
Kurzfassung
Konventionelle Aluminisierungen werden meist bei Temperaturen deutlich oberhalb von 900 °C durchgeführt und dauern oft mehrere Stunden. Die Aluminisierung von Warmarbeitsstählen muss bei weit niedrigeren Temperaturen durchgeführt werden, um Kornvergröberung und Carbidausscheidung zu unterbinden und die Kriechbeständigkeit zu verbessern.
Die Kinetik der Aluminidschichtbildung auf Warmarbeitsstählen im Temperaturbereich von 550–610 °C wurde untersucht. Der Aluminiumgehalt der Packung wurde zwischen 5 Ma.-% und 15 Ma.-% variiert, die Dauer der Aluminisierung zwischen 1 Stunde und 9 Stunden. Als Aktivator wurde das Halogenid AlCl3 verwendet. Mithilfe der statistischen Versuchsplanung wurden die Haupteinflussfaktoren auf die Aluminidschichtbildung identifiziert. Durch Anwendung einer Box-Behnken-Versuchsstrategie konnten drei Prozessgrößen auf drei Stufen ausgewertet werden. Das Gefüge der beschichteten Proben wurde am Rasterelektronenmikroskop untersucht. Die Verteilung der chemischen Elemente in der Beschichtung wurde mit GDOS und EDX bestimmt.
References
1. Sully, L. J. D.: Die Casting. Metals Handbook, Vol. 15, ASM Int., Metals Park, OH/USA, 1988, p. 286–295Search in Google Scholar
2. Davis, J. R. (Ed.): Tool Materials. ASM Speciality Handbook, ASM Int., Materials Park, OH/USA, 1995Search in Google Scholar
3. Brunhuber, E. (Ed.): Gieβerei-Lexikon. Verlag Schiele & Schön, Berlin, 1994Search in Google Scholar
4. Shivpuri, R.; Semiatin, S. L.: Friction and wear of dies and die materials. In: Friction, Lubrication and Wear Technology. ASM Handbook, Vol. 18, ASM Int., Metals Park, OH/USA, 1992, p. 621–648Search in Google Scholar
5. Persson, A.; Hogmark, S.; Bergström, J.: Thermal fatigue cracking of surface engineered hot work tool steels. Surf. Coat. Technol.191 (2005), p. 216–227Search in Google Scholar
6. Wallace, J. F.; Schwam, D.: Development studies on selection processing of die materials to extend die life. Die Cast. Eng.44 (2000) 3, p. 50–59Search in Google Scholar
7. Young, W.: Why die casting dies fail? Proc. 10th SDCE Int. Die Casting Exposition & Congress, 19–22.03.79, St. Louis, MO/USA, paper no. G-T79-092, Society of Die Casting Engineers, 1979, p. 1–7Search in Google Scholar
8. Persson, A.; Hogmark, S.; Bergström, J.: Simulation and evaluation of thermal fatigue cracking of hot work tool steels. Int. J. Fatigue26 (2004), p. 1095–1107Search in Google Scholar
9. Klobčar, D.; Tušek, J.; Taljat, B.: Thermal fatigue of materials for die-casting tooling. Mater. Sci. Eng. A472 (2008), p. 198–207Search in Google Scholar
10. Persson, A.; Hogmark, S.; Bergström, J.: Temperature profiles and conditions for thermal fatigue cracking in brass die casting dies. J. Mater. Process. Technol.152 (2004), p. 228–236Search in Google Scholar
11. Mitterer, C.; Holler, F.; Üstel, F.; Heim, D.: Application of hard coatings in aluminium die casting – soldering, erosion and thermal fatigue behaviour. Surf. Coat. Technol.125 (2000), p. 233–239Search in Google Scholar
12. Gulizia, S.; Jahedi, M. Z.; Doyle, E. D.: Performance evaluation of PVD coatings for high pressure die casting. Surf. Coat. Technol.140 (2001), p. 200–205Search in Google Scholar
13. Zhu, H.; Guo, J.; Jia, J.: Experimantal study and theoretical analysis on die soldering in aluminium die casting. J. Mater. Process. Technol.123 (2002) 2, p. 229–235Search in Google Scholar
14. Heim, D.; Holler, F.; Mitterer, C.: Hard coatings produced by PACVD applied to aluminium die casting. Surf. Coat. Technol.116–119 (1999), p. 530–536Search in Google Scholar
15. B.Matijević; Stupnišek, M.: Prevention of reactive soldering on high pressure die casting parts. Proc. 17th IFHTSE Congr., 27–30.10.08, Kobe, Japan; Netsu Shori, Special Issue 49 (2009), p. 381–384Search in Google Scholar
16. Fraser, D. T.; Jahedi, M. Z.: Formation of alumina layer on aluminium-containing steels for prevention of soldering in high pressure die casting dies. Proc. 6th Int. Tooling Conf., 10–13.09.02, Karlstad, Sweden, 2002, p. 831–840Search in Google Scholar
17. Jahedi, M. Z.; Fraser, D. T.: Prevention of soldering in high pressure die casting dies using aluminium & iron oxide surface treatment. Proc. 21st Int. Die Casting Congress & Exposition, Cincinnati, Ohio/USA, 29.10.-01.11.01, North American Die Casting Association, 2001, paper T01–112Search in Google Scholar
18. Kattner, U. R.; Massalski, T. B.: In: Binary Alloy Phase Diagrams, H.Baker (Ed.), ASM Int., Materials Park, OH/USA, 1990, p. 147Search in Google Scholar
19. Kircher, T. A.; McMordie, B. G.; Richards, K.: Use of experimental designs to evaluate formation of aluminide and platinum aluminide coatings. Surf. Coat. Technol.108–109 (1998), p. 24–29Search in Google Scholar
© 2012, Carl Hanser Verlag, München