Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 14, 2013

Perspektiven der Heißzerspanung aus der Schmiedewärme

Perspectives of hot machining using forging heat
F. Egorov, M. Garbrecht and E. Brinksmeier

Kurzfassung

Die Heißzerspanung ist seit über 60 Jahren Forschungsthema und wird zum Teil für die Bearbeitung von schwer zerspanbaren Werkstoffen angewendet. Für den wirtschaftlichen Einsatz der Heißzerspanung sind die richtige Auswahl und die Energieeffizienz der Wärmequelle von großer Bedeutung. Als alternativer Lösungsansatz wird an der Stiftung Institut für Werkstofftechnik (IWT) in Bremen seit 2010, im Rahmen des Clusterprojektes EcoForge, die Heißzerspanung von ausscheidungshärtenden ferritisch-perlitischen Stählen unter Nutzung der vorhandenen Wärmeenergie aus dem Schmiedeprozess erforscht. Die Ziele sind dabei, das Potenzial der Heißzerspanung aufzuzeigen und durch die Integration der Zerspanung in die Wärmebehandlungsroute die Prozesskette deutlich zu verkürzen. In diesem Beitrag werden Ergebnisse von Werkzeugverschleißuntersuchungen beim Außenrund-Längsdrehen mit beschichteten Hartmetallwerkzeugen am Werkstoff 38MnVS6 in zwei Gefügevarianten, Ferrit-Perlit und unterer Bainit, bei 20 °C und 500 °C dargestellt und diskutiert.

Abstract

Hot machining (machining at elevated workpiece temperatures) has been a research topic for more than 60 years and is used in some cases for the machining of difficult to cut materials. For extended use the choice of an efficient heating method is of high importance. Since 2010 the hot machining of precipitation hardening ferrite-pearlite steels with the utilization of available heat energy from the forging is being investigated at the Stiftung Institut für Werkstofftechnik (IWT) in Bremen. This research work is a part of the cluster project EcoForge. The potential of hot machining by shortening the usual process chain and the integration of machining during heat treatment was investigated. Within the current work, the results of the tool wear tests during turning with coated carbide cutting tools on material 38MnVS6 in two structural variants, ferrite-pearlite and lower bainite, at 20 °C and 500 °C are presented and discussed.


2 (Kontakt/Corresponding author)

Literatur

1. Behrens, B.-A.; Bleck, W.; Bach, Fr.-W.; Brinksmeier, E.; Fritsching, U.; Liewald, M.; Zoch, H.-W.: EcoForge: Resource-efficient process chains for high performance parts. KEM504–506 (2012), S. 15115610.4028/www.scientific.net/KEM.504-506.151Search in Google Scholar

2. Tour, S.; Fletcher, L. S.: Hot Spot Machining. Iron Age164 (1949), S. 7889Search in Google Scholar

3. Krabacher, E. J.; Merchant, M. E.: Basic factor of hot machining of metals. J. Eng. f. Industry; Trans. ASME73 (1951), S. 761776Search in Google Scholar

4. Armstrong, E. T.; Cosler, A. S.; Katz, E. F.: Machining of Heated Metals. Soc. Mech. Engrs.73 (1951), S. 7889Search in Google Scholar

5. Kohlhaas, E.; Jung, O.; Schuler, D.: Heißzerspanung von Stählen und einer hochwarmfesten Nickellegierung. Arch. Eisenhüttenwes.45 (1974) 7, S. 475481Search in Google Scholar

6. Lajis, M. A.; Amin, A. K. M. N.; Karim, A. N. M.; Radzi, H. C. D. M.; Ginta, T. L.: Hot Machining of Hardened Steels with Coated Carbide Inserts. Am. J. Eng. Appl. Sci.2 (2009) 2, S. 42142710.3844/ajeassp.2009.421.427Search in Google Scholar

7. Amin, A. K. M. N.; Talantov, N. V.: Influence of instability of chip formation and preheating of work on tool life in machining high temperature resistance steel and titanium alloy. Mech. Eng. Res. Bull.9 (1986), S. 5262Search in Google Scholar

8. Özler, L.; İnan, A.; Özel, C.: Theoretical and experimental determination of tool life in hot machining of austenitic manganese steel. Int. J. Mach. Tools Manufact.41 (2001), S. 163172Search in Google Scholar

9. Tosun, N.; Özler, L.: A study of tool life in hot machining using artificial neural networks and regression analysis method. J. Mater. Process. Techn.124 (2002), S. 9910410.1016/S0924-0136(02)00086-9Search in Google Scholar

10. Maity, K. P.; Swain, P. K.: An experimental investigation of hot-machining to predict tool life. J. Mater. Process. Techn.198 (2008), S. 34434910.1016/j.jmatprotec.2007.07.018Search in Google Scholar

11. Kitagawa, T.; MaekawaK.: Plasma hot machining for new engineering materials. Wear139 (1990), S. 25126710.1016/0043-1648(90)90049-GSearch in Google Scholar

12. Madhavulu, G.; Ahmed, B.: Hot machining process for improved metal removal rates in turning operations. J. Mater. Process. Techn.44 (1994), S. 19920610.1016/0924-0136(94)90432-4Search in Google Scholar

13. Shin, Y. C.; Kim, J.-N.: Plasma enhanced machining of Inconel 718. ASME, Manufact. Eng. Division MED4 (1996), S. 243249Search in Google Scholar

14. Novak, J. W.; Shin, Y. C.; Incropera, F. P.: Assessment of plasma enhanced machining for improved machinability of Inconel 718. J. Manufact Sci. Eng., Trans. ASME119 (1997), S. 12512910.1115/1.2836550Search in Google Scholar

15. Leshock, C. E.; Kim, J.-N.; Shin, Y. C.: Plasma enhanced machining of Inconel 718: modeling of workpiece temperature with plasma heating and experimental results. Int. J. Mach. Tools Manufact.41 (2001), S. 87789710.1016/S0890-6955(00)00106-1Search in Google Scholar

16. López de Lacalle, L.N.; Sánchez, J.A.; Lamikiz, A.; Celaya, A.: Plasma assisted milling heat-resistant superalloys. J. Manufact Sci. Eng., Trans. ASME126 (2004), S. 274285Search in Google Scholar

17. Barrow, G.: Machining of high strength materials at elevated temperature using electrical current heating. CIRP Ann.14 (1966), S. 145151Search in Google Scholar

18. Amin, A. K. M. N.; Abdelgadir, M.: The effect of preheating of work material on chatter during end milling of medium carbon steel performed on a vertical machining center (VMC). J. Manufact Sci. Eng., Trans. ASME125 (2003), S. 67468010.1115/1.1596557Search in Google Scholar

19. Amin, A. K. M. N.; Dolah, S. B.; Mahmud, M. B.; Lajis, M. A.: Effects of workpiece preheating on surface roughness, chatter and tool performance during end milling of hardened steel D2. J. Mater. Process. Techn.201 (2008), S. 46647010.1016/j.jmatprotec.2007.11.304Search in Google Scholar

20. Ginta, T. L.; Amin, A. K. M. N.; Lajis, M. A.; Karim, A. N. M.; Radzi, H. C. D. M.: Improved tool life in end milling Ti-6Al-4V through workpiece preheating. Europ. J. Sci. Res.27 (2009), S. 384391Search in Google Scholar

21. Jau, B. M.; Copley, S. M.; Bass, M.: Laser assisted machining. Proc. 9th North American Manufacturing Research Conf., May 19–22, 1981, University Park, Pennsylvania, USA, 1981, S. 12–15Search in Google Scholar

22. Rajagopal, S.; Plankenhorn, D. J.; Hill, V. L.: Machining aerospace alloys with the aid of a 15 kW laser. J. Appl. Metalwork.2 (1982), S. 17018410.1007/BF02834035Search in Google Scholar

23. Chryssolouries, G.; Anifantis, N.; Karagiannis, S.: Laser assisted machining: an overview. J. Manufact Sci. Eng., Trans. ASME119 (1997), S. 76676910.1115/1.2836822Search in Google Scholar

24. Anderson, M.; Patwa, R.; Shin, Y. C.: Laser-assisted machining of Inconel 718 with an economic analysis. Int. J. Mach. Tools Manufact.46 (2006), S. 1879189110.1016/j.ijmachtools.2005.11.005Search in Google Scholar

25. Dumitrescu, P.; Koshy, P.; Stenekes, J.; Elbestawi, M. A.: High-power diode laser assisted hard turning AISI D2 tool steel. Int. J. Mach. Tools Manufact.46 (2006), S. 2009201610.1016/j.ijmachtools.2006.01.005Search in Google Scholar

26. Bausch, S.; Groll, K.: Perspektiven für die laserunterstützte Zerspanung. Wirtschaftliche Bearbeitung schwer zerspanbarer Werkstoffe. wt Werkstattstech. online93 (2003) 6, S. 457461Search in Google Scholar

27. Brecher, C.; Rosen, C.-J.: Laserunterstützte Zerspanung – Der Einsatz des Lasers ermöglicht die effiziente, spanende Materialbearbeitung – Laser. Europäischer Laser Markt/Sonderheft24 (2010), S. 4244 und 46–47Search in Google Scholar

28. Lei, S.; Pfefferkorn, F.: A review of thermally assisted machining. Proc. ASME Int. Manufact. Sci. Eng. Conf. (MSEC2007), 15–18.10.2007, Atlanta, Georgia, USA, 2007, S. 11210.1115/MSEC2007-31096Search in Google Scholar

29. Sun, S.; Brandt, M.; Dargusch, M. S.: Thermally enhanced machining of hard-to-machine materials – A review. Int. J. Mach. Tools Manufact.50 (2010), S. 66368010.1016/j.ijmachtools.2010.04.008Search in Google Scholar

Online erschienen: 2013-08-14
Erschienen im Druck: 2013-04-25

© 2013, Carl Hanser Verlag, München

Scroll Up Arrow