Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 22, 2014

Residual Stress in the Cementite Phase of Cold Drawn Pearlite*

Eigenspannungen in der Zementitphase von kaltgezogenem Perlit
J. Tacq, M. Kriška and M. Seefeldt


Residual stresses in cold drawn, pearlitic steel wire have been measured using synchrotron diffraction. In this paper the cementite residual stress evolution is presented. A saturation of the residual stress could be observed. A simple analytical model is proposed to interpret the observed residual stresses in terms of the strain hardening behaviour of the phases present in the material. From the analytical model it follows that it is not reverse plastic yielding of the ferrite that is of primary importance in residual stress saturation, but the actual strain hardening behaviour. The experimentally observed saturation, followed by a gradual decrease of the residual micro phase stress, could be explained by an exponential strain hardening of the ferrite, while the cementite phase doesn't show significant strain hardening.


Die Eigenspannungen in kaltgezogenem perlitischen Stahldraht wurden durch Beugung von Synchrotronstrahlung gemessen. Im vorliegenden Beitrag wird die Eigenspannungsentwicklung in der Zementitphase vorgestellt. Beobachtet wurde eine Sättigung der Eigenspannungen. Es wird ein einfaches analytisches Modell vorgeschlagen, um die beobachteten Eigenspannungen in Abhängigkeit vom Verfestigungsverhalten der beiden Phasen des Werkstoffs zu deuten. Im Rahmen dieses analytischen Modells folgt, dass die Sättigung nicht in erster Linie auf plastische Rückverformung zurückzuführen ist, sondern auf das jeweilige Verfestigungsverhalten der beiden Phasen. Die experimentell beobachtete Sättigung und ein anschließender allmählicher Rückgang der Eigenspannungen können unter Annahme einer exponentiellen Verfestigung des Ferrits und einer nur geringen Verfestigung des Zementits erklärt werden.

3 (Corresponding author/Kontakt)

Enhanced contribution based upon a presentation at the International Conference on Residual Stresses ICRS9, October 7–9, 2012, in Garmisch-Partenkirchen, Germany


1. HosfordJr., W. F.: Microstructural changes during deformation of [011] fiber-textured metals. Trans. Metall. Soc. AIME230 (1964), p. 1215Search in Google Scholar

2. Embury, J.; Fisher, R. M.: The structure and properties of drawn pearlite. Acta Metal. 14 (1966), p. 147159, 10.1016/0001-6160(66)90296-3Search in Google Scholar

3. Langford, G.: Deformation of Pearlite. Metall. Trans. A8 (1977), p. 861875, 10.1007/bf02661567Search in Google Scholar

4. Gil Sevillano, J.: Substructure and strengthening of heavily deformed single and two-phase metallic materials. J. Physique III1 (1991), p. 967988, 10.1051/jp3:1991168Search in Google Scholar

5. Gil Sevillano, J.: A twist on heavily drawn wires. Mordica Lecture, Wire Expo 2010Search in Google Scholar

6. Gridnev, V. N.; Gavrilyuk, V. G.: Cementite decomposition in Steel under Plastic Deformation (a Review). Physics of Metals4 (1982), p. 531551Search in Google Scholar

7. Sauvage, X.; Copreaux, J.; Danoix, F.; Blavette, D.: Atomic-scale observation and modelling of cementite dissolution in heavily deformed pearlitic steels. Phil. Mag. A80 (2000), p. 781796, 10.1080/01418610008212082Search in Google Scholar

8. Languillaume, J.; Kapelski, G.; Baudelet, B.: Cementite dissolution in heavily cold drawn pearlitic steel wires. Acta Mater.45 (1997), p. 12011212, 10.1016/s1359-6454(96)00216-9Search in Google Scholar

9. Read, H. G.; ReynoldsJr., W. T.; Hono, K.; Tarui, T.: APFIM and TEM studies of drawn pearlitic wire. Scripta Mater.37 (1997), p. 12211230, 10.1016/s1359-6462(97)00223-6Search in Google Scholar

10. Li, Y. J.; Choi, P.; Borchers, C.; Westkamp, S.; Goto, S.; Raabe, D.; Kirchheim, R.: Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite. Acta Mater.59 (2011), p. 39653977, 10.1016/j.actamat.2011.03.022Search in Google Scholar

11. Walentek, A.; Seefeldt, M.; Verlinden, B.; Aernoudt, E.; Van Houtte, P.: Investigation of pearlite structure by means of electron backscatter diffraction and image analysis of SEM micrographs with an application of the Hough transform. Mat. Sci. Eng. A483–484 (2008), p. 716718, 10.1016/j.msea.2006.12.171Search in Google Scholar

12. Nikolussi, M.; Shang, S. L.; Gressmann, T.; Leineweber, A.; Mittemeijer, E. J.; Wang, Y.; Liub, Z.-K.: Extreme elastic anisotropy of cementite, Fe3C: First-principles calculations and experimental evidence. Scripta Mater.59 (2008), p. 814817, 10.1016/j.scriptamat.2008.06.015Search in Google Scholar

13. Alkorta, J.; Gil Sevillano, J.: Assessment of elastic anisotropy and incipient plasticity in Fe3C by nanoindentation. J. Mater. Res.27 (2011), p. 4552, 10.1557/jmr.2011.284Search in Google Scholar

14. Gil Sevillano, J.: Room temperature plastic deformation of pearlitic cementite. Mat. Sci. Eng.21 (1975), p. 221225, 10.1016/0025-5416(75)90218-9Search in Google Scholar

15. Hanabusa, T.; Fukura, J.; Fujiwara, H.: X-ray stress measurement on the cementite phase in steels. JSME12 (1969), p. 931939, 10.1299/jsme1958.12.931Search in Google Scholar

16. Van Acker, K.; Root, J.; Van Houtte, P.; Aernoudt, E.: Neutron diffraction measurement of the residual stress in the cementite and ferrite phases of cold-drawn steel wires. Acta Mater.44 (1996), p. 40394049, 10.1016/s1359-6454(96)00051-1Search in Google Scholar

17. Oliver, E. C.; Daymond, M. R.; Withers, P. J.: Interphase and intergranular stress generation in carbon steels. Acta Mater.52 (2004), p. 19371951, 10.1016/j.actamat.2003.12.035Search in Google Scholar

18. Martinez-Perez, M. L.; Mompean, F. J.; Ruiz-Hervias, J.; Borlado, C. R.; Atienza, J. M.; Garcia-Hernandez, M.; Elices, M.; Gil-Sevillano, J.; RuLin Peng; Buslaps, T.: Residual stress profiling in the ferrite and cementite phases of cold-drawn steel rods by synchrotron X-ray and neutron diffraction. Acta Mater.52 (2004), p. 53035313, 10.1016/j.actamat.2004.07.036Search in Google Scholar

19. Weisser, M. A.; Evans, A. D.; Van Petegem, S.; Holdsworth, S. R.; Van Swygenhoven, H.: In situ room temperature tensile deformation of a 1% CrMoV bainitic steel using synchrotron and neutron diffraction. Acta Mater.59 (2011), p. 44484457, 10.1016/j.actamat.2011.03.068Search in Google Scholar

20. Kriška, M.; Tacq, J.; van Acker, K.; Seefeldt, M.: Evolution of Residual Micro Phase and Orientation Dependent Stresses during Cold Wire Drawing. Proc. 9th Int. Conf. on Residual Stresses, 7–9.10.12, Garmisch-Partenkirchen, Germany, S. J. B. Kurz, E. J. Mittemeijer and B. Scholtes (Eds.); Materials Science Forum768–769 (2014), p. 327334, 10.4028/ in Google Scholar

21. Tacq, J.; Kriška, M.; Seefeldt, M.: Synchrotron Diffraction Study of the Cementite Phase in Cold Drawn Pearlitic Steel Wires. Proc. 9th Int. Conf. on Residual Stresses, 7–9.10.12, Garmisch-Partenkirchen, Germany, S. J. B. Kurz, E. J. Mittemeijer and B. Scholtes (Eds.); Materials Science Forum768–769 (2014), p. 380390, 10.4028/ in Google Scholar

22. Kriška, M.; Tacq, J.; Seefeldt, M.: Microstructure and Properties of Pearlitic Steel during Cold Wire Drawing: A Residual Stress Perspective. In this journal, p. 97105, 10.3139/105.110217Search in Google Scholar

23. Genzel, Ch.; Denks, I. A.; Gibmeier, J.; Klaus, M.; Wagener, G.: The materials science synchrotron beamline EDDI for energy-dispersive diffraction analysis. Nucl. Instrum. Meth. Phys. Res. A578 (2007), p. 2333, 10.1016/j.nima.2007.05.209Search in Google Scholar

24. Rendle, D. F.: Analysis of Brass by X-ray Powder Diffraction. J. Forensic Sci.26 (1981), p. 343351Search in Google Scholar

25. Chakrabarty, J.: Theory of Plasticity. McGraw-Hill, New York, 1987, p. 910Search in Google Scholar

Published Online: 2014-12-22
Published in Print: 2014-04-30

© 2014, Carl Hanser Verlag, München

Scroll Up Arrow