Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 22, 2014

Evaluating Heat Transfer Conditions in Gas Cooling for Complex Specimen Geometries

Auswertung der Wärmeübertragung bei der Gasabschreckung in komplexen Systemen
T. Bucquet and U. Fritsching

Abstract

A comparative study has been carried out for an analysis of the heat transfer conditions in a gas cooling process of metallic specimens. Two different specimen geometries, namely a bevel gear and a helical gear streamed by a high-velocity cooling air flow at atmospheric pressure are investigated. Local and integral heat transfer coefficient distributions of these relevant specimen geometries have been monitored using direct and indirect measurement techniques as well as numerical simulations. It is found that the measurements of the helical gear are well correlated by classical correlations found in the literature. However the heat transfer from the bevel gear tends to be underpredicted when using standard correlations. In both cases, numerical simulations give satisfying predictions of the local heat transfer coefficient.

Kurzfassung

Es wurde eine vergleichende Untersuchung verschiedener Methoden zur Analyse der Wärmeübertragung von Bauteilen bei der Abschreckung in einem industriellen Gasabschreckprozess durchgeführt. Zwei Getriebebauteile bzw. Probengeometrien, ein Kegelrad und ein Zahnrad, wurden in einer turbulenten Luftströmung bei atmosphärischem Druck untersucht. Direkte und indirekte Messmethoden sowie numerische Simulationen dienten zur Bestimmung und Auswertung der Verteilungen des lokalen und integralen Wärmeübergangskoeffizienten. Die Messergebnisse für das Zahnrad korrelieren mit klassischen Wärmeübergangskoeffizienten aus der Literatur. Die Wärmeübergangsmessungen am Kegelrad hingegen weisen Abweichungen bei der Anwendung von Standard-Korrelationen auf, die im Beitrag diskutiert werden. In beiden Fällen zeigen die Ergebnisse der numerischen Simulationen eine gute Vorhersagemöglichkeit des lokalen Wärmeübergangskoeffizienten für komplexe Bauteile.


3 (Corresponding author/Kontakt)

Literatur

1. Chaffotte, F.; Bockel-Macal, S.: Trempe gazeuse: la réponse technique et environnementale aux exigences des opérations de trempe. Trait. Therm.387 (2008), p. 2934Search in Google Scholar

2. Liscic, B.; Tensi, H.; Canale, L.; Totten, G. (Eds.): Quenching theory and technology. Taylor & Francis, USA, 2010, 10.1201/9781420009163Search in Google Scholar

3. Totten, G. E.; Bates, E. C.; Clinton, N. A.: Handbook of quenchants and quenching technology. ASM int., Ohio, USA, 1993, 10.1016/0261-3069(93)90123-dSearch in Google Scholar

4. Tensi, H. M.; Stich, A.; Totten, G. E.: Fundamentals about quenching by submerging. Proc. Int. Heat Treating Conf., Equipment and Processes, 18-20.04.94, Schaumburg, Illinois, USA, Totten, G. E. (Ed.); ASM int., Ohio, USA, 1994, p. 243252Search in Google Scholar

5. Altena, H.; Jurci, P.; Stola, P.: Gas and Oil Quenching Effects on Gear Distortion. Industrial Heating71 (2004), p. 4548Search in Google Scholar

6. Schüttenberg, S.; Frerichs, F.; Hunkel, M.; Fritschin, U.; Mayr, P.: Verzugskompensation mittels Gasabschreckung in flexiblen Düsenfeldern, Teil 1: Prozesstechnik. HTM Haerterei-Techn. Mitt.59 (2004), p. 185192Search in Google Scholar

7. Schmidt, R. R.; Fritsching, U.; Lübben, Th.: Prozessmöglichkeiten zur gezielten Einstellung des Gasabschreckens. HTM J. Heat Treatm. Mat.64 (2009), p. 35136310.3139/105.110039Search in Google Scholar

8. Volker, H.; Löser, K.; Faron, D. R.; Bolton, D.: Low Distortion Heat Treatment of Transmission Components. Gear Technol.28 (2011), p. 8693Search in Google Scholar

9. VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (Ed.): VDI Heat Atlas. 2nd ed., Springer, Heidelberg, 2010Search in Google Scholar

10. Thery, P.: Heat Flux Sensor Series. Captec Enterprise, Lille, France, 2012Search in Google Scholar

11. Herin, Ph.; Thery, P.: Measurements on the thermoelectric properties of thin layers of two metals in electrical contact. Application for designing new heat-flow sensors. Meas. Sci. Techn.3 (1992), p. 495500, 10.1088/0957-0233/3/5/009Search in Google Scholar

12. Mocikat, H.; Herwig, H.: Heat transfer measurements with surface mounted foil-sensors in an active mode: A comprehensive review and a new design. Sensors9 (2009), p. 30113032, 10.3390/s90403011Search in Google Scholar

13. Heck, U.; Fritsching, U.; Bauckhage, K.: Fluid flow and heat transfer in gas jet quenching of a cylinder. Int. J. Numer. Meth. Heat & Fluid Flow11 (2000), p. 3649, 10.1108/09615530110364079Search in Google Scholar

14. Ferrari, J.; Lior, N.; Slycke, J.: An evaluation of gas quenching of steel rings by multiple-jet impingement. J. Mater. Proc. Techn.136 (2003), p. 190201, 10.1016/s0924-0136(03)00158-4Search in Google Scholar

15. Lior, N.: The cooling process in gas quenching. J. Mater. Proc. Techn.155 (2004), p. 18811888, 10.1016/j.jmatprotec.2004.04.279Search in Google Scholar

16. Narazaki, M.; Kogawara, M.; Qin, M.; Watanabe, Y.: Measurement and database construction of heat transfer coefficients of gas quenching. Strojniški vestnik55 (2009), p. 167173Search in Google Scholar

17. Menter, F. R.; Kuntz, M.; Langtry, R.: Ten years of industrial experience with the SST turbulence model. Turbulence Heat and Mass Transfer4 (2003), p. 625632Search in Google Scholar

18. Mangani, L.; Bianchini, C.: Heat Transfer Applications in Turbomachinery. Proc. OpenFOAM Conf., 26-27.11.07, London, UK, 2007Search in Google Scholar

19. Menter, F.; Carregal Ferreira, J.; Esch, T.; Konno, B.: The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines. Proc. Int. Gas Turbine Congr., IGTC2003, 2-7.11.03, Tokyo, Japan, Watanabe, T. (Ed.); Gas Turbine Soc.Japan, 2003, Session C-4, TS-059Search in Google Scholar

20. Holmberg, D. G.; Womeldorf, C. A.: Performance and modeling of heat flux sensors in different environments. ASME Publ. Heat Transfer Division364, 1999, p. 717810.1115/IMECE1999-1105Search in Google Scholar

21. Heuer, V.; Faron, D. R.; Bolton, D.; Lifshits, M.; Loeser, K.: Distortion Control of Transmission Components by Optimized High Pressure Gas Quenching. J. Mat. Eng. Perform.22 (2013), p. 18331838, 10.1007/s11665-013-0547-6Search in Google Scholar

22. Wiberg, R.; Lior, N.: Heat transfer from a cylinder in axial turbulent flows. Int. J. Heat Mass Trans. 48 (2005), p. 15051517, 10.1016/j.ijheatmasstransfer.2004.10.015Search in Google Scholar

23. Pellegrino, G.; et al.: Efficient numerical simulation techniques for high pressure gas quenching. Proc. 23rd Heat Treating Soc. Conf., 25-28.09.05, Pittsburgh, Pennsylvania, USA, Herring, D. (Ed.); ASM int., Ohio, USA, 2006, p. 320328Search in Google Scholar

Published Online: 2014-12-22
Published in Print: 2014-06-27

© 2014, Carl Hanser Verlag, München

Scroll Up Arrow