Skip to content
BY 4.0 license Open Access Published by De Gruyter December 13, 2017

Atomic Mechanism of the Bainite Transformation

Lecture by the Award winner of “Adolf Martens Medal” at the AWT Bainite Symposium “Bainite – from nano to macro”, 1–2 June 2017 in Wiesbaden, Germany

  • H. K. D. H. Bhadeshia


I have on previous occasions shown how we can be surprised and delighted by new discoveries in steels, which at the same time may be useful. However, my focus in this lecture is purely on some basic science so that a well-founded understanding of mechanisms can lead to ever greater advances. The composite structure that is known colloquially as bainite is arguably the most interesting of all of the essential microstructures that occur in steels, where the manner in which atoms move is seminal to the design of steels. Therefore, I take the liberty to indulge myself and talk only of theory on this occasion.


1. Davenport, E. S.; Bain, E. C.: Transformation of austenite at constant subcritical temperatures. Trans. Am. Inst. Min. Metall. Engng.90 (1930), pp. 117154Search in Google Scholar

2. Bhadeshia, H. K. D. H.: Bainite in steels: theory and practice. 3rd ed., Maney Publ., Leeds, UK, 2015Search in Google Scholar

3. Colbeck, E. W.; Rait, J. R.: Creep-resisting ferritic steels. Tech. Rep. Special Report 43, Iron and Steel Institute, London, UK, 1952Search in Google Scholar

4. Zhang, F. C.; Wang, T. S.; Zhang, P.; Zhang, C. L.; Lv, B.; Zhang, M.; Zhang, Y. Z.: A novel method for the development of a low-temperature bainitic microstructure in the surface layer of low-carbon steel. Scr. Mater.59 (2008), pp. 294296, 10.1016/j.scriptamat.2008.03.024Search in Google Scholar

5. Bhadeshia, H. K. D. H.; Honeycombe, R. W. K.: Steels: Microstructure and Properties. 4th ed., Elsevier, Amsterdam, NL, 201710.1016/B978-0-08-100270-4.00013-5Search in Google Scholar

6. Zhu, Z.; Han, J.; Li, H.; Lu, C.: High temperature processed high Nb X80 steel with excellent heat-affected zone toughness. Mater. Lett.163 (2016), pp. 171174, 10.1016/j.matlet.2015.10.071Search in Google Scholar

7. Bhadeshia, H. K. D. H.: Diffusional formation of ferrite in iron and its alloys. Progr. Mater. Sci.29 (1985), pp. 321386, 10.1016/0079-6425(85)90004-0Search in Google Scholar

8. Shipway, P. H.; Bhadeshia, H. K. D. H.: Mechanical stabilisation of bainite. Mater. Sci. Techn.11 (1995), pp. 11161128, 10.1179/026708395790164526Search in Google Scholar

9. Chatterjee, S.; Wang, H. S.; Yang, J. R.; Bhadeshia, H. K. D. H.: Mechanical stabilisation of austenite. Mater. Sci. Techn.22 (2006), pp. 641644, 10.1179/174328406x86128Search in Google Scholar

10. Ko, T.; Cottrell, S. A.: The formation of bainite. JISI172 (1952), pp. 307313Search in Google Scholar

11. Christian, J. W.: Accommodation strains in martensite formation, the use of the dilatation parameter. Acta Metall.6 (1958), pp. 377379, 10.1016/0001-6160(58)90077-4Search in Google Scholar

12. Swallow, E.; Bhadeshia, H. K. D. H.: High resolution observations of displacements caused by bainitic transformation. Mater. Sci. Techn.12 (1996), pp. 121125, 10.1179/026708396790165614Search in Google Scholar

13. Machlin, E. S.; Cohen, M.: Burst phenomenon in the martensitic transformation. Trans. Metall. Soc. AIME191 (1951), pp. 746754Search in Google Scholar

14. Ehrenfest, P.: Phasenumwandlungen im ueblichen und erweiterten Sinn, klassifiziert nach den entsprechenden Sigularitaeten des thermodynamischen Potentiales. Verhandelingen der Koninklijke Akademie van Wetenschappen 36, Amsterdam, NL, 1933, pp. 153157Search in Google Scholar

15. Olson, G. B.; Cohen, M.: Interphase-boundary dislocations and the concept of coherency. Acta Metall.27 (1979), pp. 19071918, 10.1016/0001-6160(79)90081-6Search in Google Scholar

16. Christian, J. W.: Theory of transformations in metal and alloys, part 1. 3rd ed., Oxford University Press, UK, 2003Search in Google Scholar

17. Bhadeshia, H. K. D. H.: Geometry of Crystals, Polycrystals, and Phase Transformations. CRC press, Florida, USA, 2017. – ISBN 978113807078310.1201/9781315114910Search in Google Scholar

18. Bilby, B. A.: Types of dislocation source. In: Bristol Conference Report on Defects in Crystalline Solids. The Physical Society, London, UK, 1955, pp. 124133Search in Google Scholar

19. Frank, F. C.: Report of the pittsburgh symposium. In: Symposium on the Plastic Deformation of Crystalline Solids. Office of Naval Research, Pittsburgh, USA, 1950, p. 150Search in Google Scholar

20. Song, W.; Prahl, U.; Bleck, W.; Mukherjee, K.: Phase field simulations of bainitic phase transformations in 100Cr6. In: Materials fabrication, properties, charaterisation and modelling. J. Wiley & Sons, New Jersey, USA, 2011, pp. 417425Search in Google Scholar

21. Ramazani, A.; Li, Y.; Mukherjee, K.; Prahl, U.; Bleck, W.; Abdurakhmanov, A.; Schleser, M.; Reisgen, U.: Microstructure evolution simulation in hot rolled DP600 steel during gas metal arc welding. Comp. Mater. Sci.68 (2013), pp. 107116, 10.1016/j.commatsci.2012.09.009Search in Google Scholar

22. Arif, T. T.; Qin, R. S.: A phase-field model for the formation of martensite and bainite. Adv. Mater. Res.922 (2014), pp. 3136, 10.4028/ in Google Scholar

23. Arif, T. T.; Qin, R. S.: A phase-field model for bainitic transformation. Comp. Mater. Sci.77 (2013), pp. 230235, 10.1016/j.commatsci.2013.04.044Search in Google Scholar

24. Kajiwara, S.: Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys. Mater. Sci. Eng.273–275 (1999), p. 6788, 10.1016/S0921-5093(99)00290-7Search in Google Scholar

25. Kajiwara, S.: HREM study on the ledge structures, transient lattices and dislocation structures at the austenite-martensite and austenite-bainite interfaces in fe-based alloys. J. Phys. IV112 (2003), pp. 6183, 10.1051/jp4:2003840Search in Google Scholar

26. Ogawa, K.; Kajiwara, S.: Basic difference between martensitic and bainitic transformations revealed by high-resolution electron microscopy. Mater. Sci. Eng. A438A–440A (2006), pp. 9094, 10.1016/j.msea.2006.02.177Search in Google Scholar

27. Bhadeshia, H. K. D. H.: Anomalies in carbon concentration determinations from nanostructured bainite. Mater. Sci. Techn.31 (2014), pp. 758763, 10.1179/1743284714y.0000000655Search in Google Scholar

28. Coates, D. E.: Diffusion controlled precipitate growth in ternary systems I. Metall. Trans.3 (1972), pp. 12031212, 10.1007/bf02642453Search in Google Scholar

29. Coates, D. E.: Precipitate growth kinetics for Fe-C-X alloys. Metall. Trans.4 (1973), pp. 395396, 10.1007/bf02649655Search in Google Scholar

30. Borgenstam, A.; Engstron, A.; Hoglund, L.; Agren, J.: DICTRA, a tool for simulation of diffusional transformations in alloys. J. Phase Equil.21 (2000), pp. 269280, 10.1361/105497100770340057Search in Google Scholar

31. Bhadeshia, H. K. D. H.: Some difficulties in the theory of diffusion-controlled growth insubstitutionally alloyed steels. Current Opinion in Solid State and Materials Science20 (2016), pp. 396400, 10.1016/j.cossms.2016.07.004Search in Google Scholar

32. Hilliard, J. E.: Spinodal decomposition. In: Zackay, V. F.; Aaronson, H. I. (Eds.): Phase Transformations. ASM Int., Metals Park, Ohio, USA, 1970, pp. 497560Search in Google Scholar

33. Gouné, M.; Danoix, F.; Ågren, J.; Bréchet, Y.; Hutchinson, C. R.; Militzer, M.; Purdy, G.; van der Zwaag, S.; Zurob, H.: Overview of the current issues in austenite to ferrite transformation and the role of migrating interfaces therein for low alloyed steels. Mater. Sci. Eng. Reports92 (2015), pp. 138, 10.1016/j.mser.2015.03.001Search in Google Scholar

34. Bhadeshia, H. K. D. H.: Considerations of solute drag in relation to transformations in steels. J. Mater. Sci.18 (1983), pp. 14731481, 10.1007/bf01111967Search in Google Scholar

35. Bhadeshia, H. K. D. H.: Solute-drag, kinetics and the mechanism of the bainite transformation. In: Marder, A. R.; Goldstein, J. I. (Eds.): Phase Transformations in Ferrous Alloys. TMS AIME, Ohio, USA, 1984, pp. 335340Search in Google Scholar

36. Bhadeshia, H. K. D. H.; Edmonds, D. V.: The mechanism of bainite formation in steels. Acta Metall.28 (1980), pp. 12651273, 10.1016/0001-6160(80)90082-6Search in Google Scholar

37. Caballero, F. G.; Miller, M. K.; Garcia-Mateo, C.: Atom probe tomography analysis of pre cipitation during tempering of a nanostructured bainitic steel. Metall. Mater Trans A42A (2011), pp. 36603668, 10.1007/s11661-011-0699-7Search in Google Scholar

38. Caballero, F. G.; Miller, M. K.; Garcia-Mateo, C.; Cornide, J.: New experimental evidence of the diffusionless transformation nature of bainite. J. All. Comp.577 (2013), pp. S626S630, 10.1016/j.jallcom.2012.02.130Search in Google Scholar

39. Caballero, F. G.; Miller, M.; Yen, H. W.; Jimenez, J. A.; Mateo, C. G.; Rivas, L. M.; Yang, J. R.: Carbon supersaturation and tetragonal bainitic ferrite in nanocrystalline bainitic steels. TMS2014, 143rd Ann. Meet. & Exhib., San Diego, USA, 2014Search in Google Scholar

40. Hulme-Smith, C. N.; Lonardelli, I.; Dippel, A. C.; Bhadeshia, H. K. D. H.: Experimental evidence for non-cubic bainitic ferrite. Scri. Mater.69 (2013), pp. 409412, 10.1016/j.scriptamat.2013.05.035Search in Google Scholar

41. Bhadeshia, H. K. D. H.; Christian, J. W.: The bainite transformation in steels. Metall. & Mater. Trans. A21A (1990), pp. 767797, 10.1007/BF02656561Search in Google Scholar

Published Online: 2017-12-13
Published in Print: 2017-12-14

© 2017, Carl Hanser Verlag, München

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 3.2.2023 from
Scroll Up Arrow