Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 13, 2017

Bainite and Superbainite in Long Products and Forged Applications*

Bainit und Superbainit in Lang- und Schmiedeprodukten
T. Sourmail

Abstract

There is no discussion that bainite has been under the spotlight of both academic research and industrial developments in the steel industry for the past 30 years. Bainitic forging steels have long been promised to a bright future with many examples already discussed in the mid-1980s. Thirty years later, it is interesting to see whether these materials have held up to expectations and what is their current status as hot forging steel grades. Successes and difficulties are discussed over the experience at Ascometal in designing and producing bainitic steels. Further from but getting perhaps closer to industrial applications, the topic of “nanostructured” bainite or “superbainite” has attracted considerable attention over the past 15 years. Recent efforts have focused on evaluating the performances of such materials for various applications, beyond looking at basic tensile strength. This implies understanding the tensile ductility, fatigue properties and wear resistance of such materials for example, but also comparing the results to existing steel grades and other manufacturing methods, and considering the costs of the different alternatives. An overview of some recent results is provided, and collateral benefits in the investigations of these materials are also presented.

Kurzfassung

Es steht außer Frage, dass Bainit in den vergangenen 30 Jahren in der Stahlindustrie sowohl in der akademischen Forschung als auch in der industriellen Entwicklung im Rampenlicht stand. Lange wurde bainitschen Schmiedestählen eine glänzende Zukunft vorausgesagt, was bereits Mitte der 1980er anhand vieler Beispiele diskutiert wurde. 30 Jahre später ist es interessant zu sehen, ob diese Materialien unseren Erwartungen entsprochen haben und wie der derzeitige Stand bezüglich der Warmschmiedestahl-Güteklassen ist. Erfolge und Schwierigkeiten werden anhand der Erfahrungen bei Ascometal beim Designen und bei der Herstellung von bainitischem Stahl diskutiert. Auf dem Weg zur industriellen Anwendung ist das Thema “nanostrukturierter Bainit” innerhalb der letzten 15 Jahre auf Interesse gestoßen. Dabei konzentrierten sich in den letzten Jahren die Arbeiten auf spezifische Fragestellungen, die über die Analyse der Zugfestigkeit hinausgingen. Beispielsweise erfolgte eine Bewertung der Duktilität oder des Ermüdungs- bzw. Verschleißverhaltens im Vergleich zu bestehenden Stahlgüten und unter Berücksichtigung der Herstellungskosten. Es wird ein Überblick über neuere Ergebnisse und daraus gewonnene Erkenntnisse gegeben.


*

Lecture held at the AWT Bainite Symposium „Bainite – from nano to macro“, June 1–2, 2017 in Wiesbaden, Germany


References

1. Bhadeshia, H. K. D. H.: Bainite in steels: theory and practice. 3rd ed.Maney Publ., Leeds, UK, 2015Search in Google Scholar

2. Sourmail, T.: 30 years of bainitic forging steels. Int. Conf. NEMU 2017, 15–17.05.17, Institut für Umformtechnik, Stuttgart, 2017Search in Google Scholar

3. Dierickx, P.; Jacot, V.; Forest, D.; Marchal, A.; Alliet, B.; Rezel, D.: Etude de la transformation bainitique dans les vilebrequins en 35mnV7. Influence des zones ségrégées/Study of bainitic transformation in 35MnV7 steel crankshafts. Effect of segregated zones. Traitement thermique N°319 (1999) Novembre, pp. 2328Search in Google Scholar

4. Bushmayer, B.: Critical Assessment 22, Bainitic forging steels. Mater. Sci. Technol.32 (2016), pp. 5172210.1080/02670836.2015.1114272Search in Google Scholar

5. Sourmail, T.; Smanio, V.: Optimisation of the mechanical properties of air-cooled bainitic steel components through tailoring of the transformation kinetics. Mater. Sci. Eng. A582 (2013), pp. 257263, 10.1016/j.msea.2013.06.040Search in Google Scholar

6. Sourmail, T.; Smanio, V.; Caballero, F. G. et al.: Evolution of Microstructure and Mechanical Properties during Tempering of Continuously Cooled Bainitic Steels. Mater. Sci. Forum706–709 (2012), pp. 23082313, 10.4028/www.scientific.net/msf.706-709.2308Search in Google Scholar

7. Liu, D.; Bai, B.; Fang, H.; Zhang, W.; Gu, J.; Chang, K.: Effect of tempering temperature and carbide free bainite on the mechanical characteristics of a high strength low alloy steel. Mater. Sci. Eng. A371 (2004), pp. 4044, 10.1016/s0921-5093(03)00270-3Search in Google Scholar

8. Gomez, G.; Perez, T.; Bhadeshia, H. K. D. H.: Air cooled bainitic steels for strong, seamless pipes. Part 2 – properties and microstructure of rolled material. Mater. Sci. Technol.25 (2009), pp. 15081512, 10.1179/174328408x388149Search in Google Scholar

9. Michaud, H.; Sprauel, J. M.; Galzy, F.: The Residual Stresses Generated by Deep Rolling and their Stability in Fatigue & Application to Deep-Rolled Crankshafts. Mater. Sci. Forum524–525 (2006), pp. 4549, 10.4028/0-87849-414-6.45Search in Google Scholar

10. Richards, M. D.; Burnett, M. E.; Speer, J. G.; Matlock, D. K.: Effects of Deformation Behavior and Processing Temperature on the Fatigue Performance of Deep-Rolled Medium-Carbon Bar Steels. Metall. Mater. Trans. A44 (2012), pp. 270285, 10.1007/s11661-012-1371-6Search in Google Scholar

11. Roth, A.; Galtier, A.: Fatigue resistance of motor components – role of residual stresses. Int. J. Fracture Fatigue & Wear (Conf. Series Proc.)3 (2015), pp. 8489Search in Google Scholar

12. Roth, A.; Hochbein, H.; Galtier, A.; Maldaner, J.; Marchal, F.: Performance benefits for crankshafts forged from bainitic steel grades thanks to deep-rolling and roller burnishing. Proc. 5th Int. Conf. Steels for Cars and Trucks, SCT 2017, 18–22.06.17, Amsterdam, NL, on CD (2017)Search in Google Scholar

13. Quidort, D.; Bréchet, Y.: The role of carbon on the kinetics of bainite transformation in steels. Scripta Mater.47 (2002), pp. 151156, 10.1016/s1359-6462(02)00121-5Search in Google Scholar

14. Sourmail, T.; Smanio, V.: Low temperature kinetics of bainite formation in high carbon steels. Acta Mater.61 (2013), pp. 26392648, 10.1016/j.actamat.2013.01.044Search in Google Scholar

15. Maminska, K.; Roth, A.; d’Eramo, E.; Marchal, F.; Galtier, A.; Sourmail, T.: A new bainitic forging steel for surface induction hardened components. Proc. 5th Int. Conf. Steels for Cars and Trucks, SCT 2017, 18.-22.06.17, Amsterdam, NL, on CD (2017)Search in Google Scholar

16. Esin, V. A.; Denand, B.; Le Bihan, Q.; Dehmas, M.; Teixeira, J.; Geandier, G.; Denis, S.; Sourmail, T.; Aeby-Gautier, E.: In situ synchrotron X-ray diffraction and dilatometric study of austenite formation in a multi-component steel: Influence of initial microstructure and heating rate. Acta Mater.80 (2014), pp. 118131, 10.1016/j.actamat.2014.07.042Search in Google Scholar

17. Caballero, F. G.; Bhadeshia, H. K. D. H.; Mawella, K. J. A.; Jones, D. G.; Brown, P.: Very strong low temperature bainite. Mater. Sci. Technol.18 (2002), pp. 279284, 10.1179/026708301225000725Search in Google Scholar

18. Garcia-Mateo, C.; Caballero, F. G.; Bhadeshia, H. K. D. H.: Low temperature bainite. J. Phys. IV112 (2003), pp. 285288, 10.1051/jp4:2003884Search in Google Scholar

19. Garcia-Mateo, C.; Caballero, F. G.; Sourmail, T.; Kuntz, M.; Cornide, J.; Smanio, V.; Elvira, R.: Tensile behaviour of a nanocrystalline bainitic steel containing 3 wt% silicon. Mater. Sci. Eng. A549 (2012), pp. 185192, 10.1016/j.msea.2012.04.031Search in Google Scholar

20. Bhadeshia, H. K. D. H.: Nanostructured bainite. Proc. R. Soc.A 466 (2010) 2113, pp. 318, 10.1098/rspa.2009.0407Search in Google Scholar

21. Morales-Rivas, L.; Garcia-Mateo, C.; Kuntz, M.; Sourmail, T.; Caballero, F. G.: Induced martensitic transformation during tensile test in nanostructured bainitic steels. Mater. Sci. Eng. A662 (2016), pp. 169177, 10.1016/j.msea.2016.03.070Search in Google Scholar

22. Gui, X.; Gao, G.; Guo, H.; Zhao, F.; Tan, Z.; Bai, B.: Effect of bainitic transformation during BQ&P process on the mechanical properties in an ultrahigh strength Mn-Si-Cr-C steel. Mater. Sci. Eng. A684 (2017), pp. 898605, 10.1016/j.msea.2016.12.097Search in Google Scholar

23. Garcia-Mateo, C.; Caballero, F. G.; Bhadeshia, H. K. D. H.: Acceleration of Low Temperature Bainite. ISIJ Int.43 (2003), pp. 18211825, 10.2355/isijinternational.43.1821Search in Google Scholar

24. Sourmail, T.; Smanio, V.: Influence of Cobalt on Bainite Formation Kinetics in 1 % C Steels. Metal. Mater. Trans. A44 (2013), pp. 19751978, 10.1007/s11661-013-1656-4Search in Google Scholar

25. Vetters, H.; Dong, J.; Zoch, H.-W.: Effect of residual austenite on properties of tool steel following shortened treatments in lower bainitic phase. J. Int. Heat Treat. Surf. Eng.3 (2009) 4, pp. 130135, 10.1179/174951409x12542264514167Search in Google Scholar

26. Vetters, H.; Dong, J.; Bomas, H.; Hoffman, F.; Zoch, H.-W.: Microstructure and fatigue strength of the roller-bearing steel 100Cr6 (SAE 52100) after two-step bainitisation and combined bainitic–martensitic heat treatment. Int. J. Mater. Res.97 (2006), pp. 14321440, 10.3139/146.101388Search in Google Scholar

27. Sourmail, T.; Caballero, F. G.; Garcia-Mateo, C.; Smanio, V.; Ziegler, C.; Kuntz, M.; Elvira, R.; Leiro, A.; Vuorinen, E.; Teeri, T.: Evaluation of potential of high Si high C steel nanostructured bainite for wear and fatigue applications. Mater. Sci. Technol.29 (2013), pp. 11661173, 10.1179/1743284713y.0000000242Search in Google Scholar

28. Garcia-Mateo, C.; Sourmail, T.; Caballero, F. G.; Smanio, V.; Kuntz, M.; Ziegler, C.; Leiro, A.; Vuoninen, E.; Elvira, R.; Teeri, T.: Nanostructured steel industrialisation: plausible reality. Mater. Sci. Technol.30 (2013), pp. 10711078, 10.1179/1743284713y.0000000428Search in Google Scholar

29. Ministry of Defence (Ed.): New armour steel showcased at DSEi, Sept. 14th, 2011, https://www.gov.uk/government/news/new-armour-steel-showcased-at-dseiSearch in Google Scholar

30. Sourmail, T. et al.: Understanding the basic mechanisms to optimize and predict in service properties of nanobainitic steels (MECBAIN). Research Fund of Coal and Steel, EU Comm., Brussels, B, 2016. – ISSN 1831-9424 (PDF)Search in Google Scholar

31. Rementiera, R.; Morales-Rivas, L.; Kuntz, M.; Garcia-Mateo, C.; Kerscher, E.; Sourmail, T.; Caballero, F. G.: On the role of microstructure in governing the fatigue behaviour of nanostructured bainitic steels. Mater. Sci. Eng. A630 (2015), pp. 7177, 10.1016/j.msea.2015.02.016Search in Google Scholar

32. Mueller, I.; Rementiera, R.; Caballero, F. G.; Kuntz, M.; Sourmail, T.; Kerscher, E.: A Constitutive Relationship between Fatigue Limit and Microstructure in Nanostructured Bainitic Steels. Materials9 (2016), pp. 831849, 10.3390/ma9100831Search in Google Scholar PubMed PubMed Central

33. Leiro, A.; Vuorinen, E.; Sundin, K.-G.; Prakash, B.; Sourmail, T.; Smanio, V.; Caballero, F. G.; Gracia-Mateo, C.; Elvira, R.: Wear of nano-structured carbide-free bainitic steels under dry rolling-sliding conditions. Wear298–299 (2013), pp. 4247, 10.1016/j.wear.2012.11.064Search in Google Scholar

34. Das Bakshi, S.; Leiro, A.; Prakash, B.; Bhadeshia, H. K. D. H.: Dry rolling/sliding wear of nanostructured bainite. Wear316 (2014), pp. 7078, 10.1016/j.wear.2014.04.020Search in Google Scholar

Published Online: 2017-12-13
Published in Print: 2017-12-14

© 2017, Carl Hanser Verlag, München

Downloaded on 31.1.2023 from https://www.degruyter.com/document/doi/10.3139/105.110342/html
Scroll Up Arrow