Skip to content
Accessible Unlicensed Requires Authentication Published by De Gruyter June 14, 2018

Effects of Nitriding-Quenching and Carburizing-Quenching on Wear Properties of Industrial Pure Iron

Einfluss von Nitrieren-Abschrecken und Aufkohlen-Abschrecken auf die Verschleißeigenschaften von industriellem Reineisen
M. Aramaki, M. Kozin, K. Yoshida and O. Furukimi

Abstract

The wear properties of industrial pure iron treated by nitriding-quenching and carburizing-quenching were investigated. Both the nitrogen martensite and carbon martensite produced by each treatment exhibited the same high degree of wear resistance. The results of sliding tests showed that the nano-indentation hardness near the surfaces of both samples had increased. The surface hardening of the nitrogen martensite was more noticeable than that of the carbon martensite. EBSD analysis revealed that plastic strain had been induced on a relatively large scale (around 20 μm) after sliding in the case of the nitrogen martensite. It was found that the high wear resistance of the nitrogen martensite led to strain hardening through the effect of the load applied in the sliding test.

Kurzfassung

Untersucht wurden die Verschleißeigenschaften von industriellem Reineisen, das mittels Nitrieren-Abschrecken und Aufkohlen-Abschrecken behandelt wurde. Das bei den jeweiligen Prozessen anfallende Stickstoffmartensit und Kohlenstoffmartensit wies die gleiche hohe Verschleißfestigkeit auf. Die Ergebnisse der Gleitversuche zeigten, dass die Nano-Eindruckhärte im oberflächennahen Bereich beider Proben zugenommen hatte. Die Oberflächenhärtung des Stickstoffmartensits war etwas stärker ausgeprägt als die des Kohlenstoffmartensits. Eine EBSD-Analyse ergab, dass im Falle des Stickstoffmartensits nach dem Gleiten eine plastische Verformung in einem relativ großen Maßstab (etwa 20 µm) stattfand. Es wurde festgestellt, dass die hohe Verschleißfestigkeit des Stickstoffmartensits durch die Einwirkung der im Gleitversuch aufgebrachten Belastung zu einer Kaltverfestigung führte.


1 (Corresponding author)

References

1. Vencl, A.; Manić, N.; Popovic, V.; Mrdak, M.: Possibility of the Abrasive Wear Resistance Determination with Scratch Tester. Tribol. Lett.37 (2009) 3, pp. 591604, 10.1007/s11249-009-9556-xSearch in Google Scholar

2. Selçuk, B.; Ipek, R.; Karamış, M. B.: A study on friction and wear behaviour of carburized, carbonitrided and borided AISI 1020 and 5115 steels. J. Mater. Process. Technol.141 (2003) 2, pp. 189196, 10.1016/s0924-0136(02)01038-5Search in Google Scholar

3. Atik, E.; Yunker, U.; Merıç, C.: The effects of conventional heat treatment and boronizing on abrasive wear and corrosion of SAE 1010, SAE 1040, D2 and 304 steels. Tribology Int.36 (2003), pp. 155161, 10.1016/s0301-679x(02)00069-5Search in Google Scholar

4. Karamiş, M. B.; Ipek, R.: An evaluation of the using possibilities of the carbonitrided simple steels instead of carburized low alloy steels (wear properties). Appl. Surf. Sci.119 (1997) 1-2, pp. 2533, 10.1016/s0169-4332(97)00173-6Search in Google Scholar

5. Fares, M. L.; Talhi, A.; Chaoui, K.; Touhami, M. Z.: Effects of gas carbonitriding process on surface characteristics of new hot working tool steel. Surf. Eng.27 (2011) 8, pp. 595601, 10.1179/026708410x12786785573157Search in Google Scholar

6. Nan, C.; Northwood, D. O.; Bowers, R. J.; Sun, X.: Study on the Dimensional Changes and Residual Stresses in Carbonitrided and Ferritic Nitrocarburized SA 1010 Plain Carbon Steel. Mater. Sci. Forum, 638–642 (2010), pp. 829834, 10.4028/www.scientific.net/msf.638-642.829Search in Google Scholar

7. Katafuchi, H.; Aramaki, M.; Yamada, N.; Chayapiwut, N.; Kabasawa, H.; Furukimi, O.: Improvement of Anti-wear Property by Nitriding-accelerated cooling Process. Proc. Europ. Conf. on Heat Treatment and 21st IFHTSE Congress, 12–15.05.14, Munich, H.-W. Zoch et al. (Eds.), 2014, pp. 467470Search in Google Scholar

8. Furukimi, O.; Katafuchi, K.; Aramaki, M.; Kozin, M.; Oue, S., Yoshida, K.; Narita, I.; Yamada, N.; Yamamoto, M.: Wear Resistance of Industrial Pure Iron Treated by Nitriding and Quenching Followed by Aging Process. Mater. Trans. JIM57 (2016) 9, pp. 15871592, 10.2320/matertrans.h-m2016825Search in Google Scholar

9. Sato, N.; Ojima, M.; Tomota, Y.; Inaba, K.: Surface Modification by nitriding-Quenching for Steels. Netsu Shori49 (2009) 1, pp. 304307Search in Google Scholar

10. Chiba, M.; Miyamoto, G.; Furuhara, T.: Microstructure of Pure Iron Treated by Nitriding and Quenching Process. J. Japan Inst. Metals76 (2012) 4, pp. 256264, 10.2320/jinstmet.76.256Search in Google Scholar

11. Tsukiyama, K.; Nakada, N.; Tsuchiyama, T.; Takaki, S.; Tomota, Y.: Effect of Cooling Rate after High Temperature Nitriding on Transformation Microstructure in Low Carbon Steel. Adv. Mat. Res.922 (2014), pp. 773778, 10.4028/www.scientific.net/amr.922.773Search in Google Scholar

12. Morito, S.; Iwami, Y.; Koyano, T.; Ohba, T.: Effect of Solution Carbon and Nitrogen on the Microstructural Size and Crystallography of Lath Martensite in Fe–N and Fe–C Alloys. Mater. Trans., JIM57 (2016) 3, pp. 227232, 10.2320/matertrans.mb201503Search in Google Scholar

13. Sherby, O. D.; Wadsworth, J.; Lesuer, D. R.; Syn, C. K.: The c/a Ratio in Quenched Fe-C and Fe-N Steels – A Heuristic Story. Mater. Sci. Forum539–543 (2007), pp. 215222, 10.4028/www.scientific.net/msf.539-543.215Search in Google Scholar

14. Izciler, M.; Tabur, M.: Abrasive wear behavior of different case depth gas carburized AISI 8620 gear steel. Wear260 (2006) 1–2, pp. 9098, 10.1016/j.wear.2004.12.034Search in Google Scholar

15. Ulutan, M.; Celik, O. N.; Gasan, H.; Er, U.: Effect of Different Surface Treatment Methods on the Friction and Wear Behavior of AISI 4140 Steel. J. Mater. Sci. Technol.26 (2010) 3, pp. 251257, 10.1016/s1005-0302(10)60042-4Search in Google Scholar

16. Emamian, A.: A Study on Wear Resistance, Hardness and Impact Behaviour of Carburized Fe-Based Powder Metallurgy Parts for Automotive Applications. Mater. Sci. Appl.3 (2012) 8, pp. 519522, 10.4236/msa.2012.38073Search in Google Scholar

17. Cheng, L.; Mittemeijer, E. J.: The tempering of iron-nitrogen martensite; Dilatometric and calorimetric analysis. Metall. Trans. A21 (1990) 1, pp. 1326, 10.1007/bf02656420Search in Google Scholar

18. Miyajima, T.; Iwai, Y.: Effects of reinforcements on sliding wear behavior of aluminum matrix composites. Wear255 (2003) 1–6, pp. 606616, 10.1016/s0043-1648(03)00066-8Search in Google Scholar

19. Romero, J. S.; Flores, A. M.; Aguilar, O. R.: Tribological evaluation of plasma nitride H13 steel. Superficies y Vacío26 (2013) 4, pp. 131138Search in Google Scholar

20. Fereiduni, E.; Banadkouki, S. S. G.: Reliability/unreliability of mixture rule in a low alloy ferrite–martensite dual phase steel. J. Alloys Compd.577 (2013), pp. 351359, 10.1016/j.jallcom.2013.05.209Search in Google Scholar

21. Saarna, M.; Kulu, P.; Veinthal, R.; Tarbe, R.: Study of surface fatigue of wear resistant powder metallurgical materials. Proc. Estonian Acad. Sci. Eng.12 (2006) 4, pp. 377387Search in Google Scholar

Published Online: 2018-06-14
Published in Print: 2018-06-13

© 2018, Carl Hanser Verlag, München