Accessible Requires Authentication Published by De Gruyter August 28, 2018

Processing of the Heat Resistant Bearing Steel M50NiL by Selective Laser Melting

Verarbeitung des warmfesten Lagerstahls M50NiL mittels selektiven Laserstrahlschmelzens aus dem Pulverbett
O. Beer, C. Merklein, D. Gerhard, O. Hentschel, M. Rasch and M. Schmidt

Abstract

Additive manufacturing (AM) methods become more and more important due to improvements in the printing technology and availability of printers. As additive manufacturing is still a very expensive technology, it is predominantly used for complex parts in aerospace or medical applications. Especially in such demanding applications the properties of the parts are very important. In case of M50NiL, a carburizing heat resistant steel typically used for mainshaft bearings in aero engines, the development of an AM process and the properties of AM processed parts are shown. By comparison with specimens manufactured from conventional M50NiL it is demonstrated, that properties determined by optical microscopy, hardness testing, tensile testing, and rolling contact fatigue testing of M50NiL AM and M50NiL conventional manufactured are comparable.

Kurzfassung

Verfahren des „Additive Manufacturing“ (AM) erlangen durch Verbesserung der Anlagentechnik und steigender Anlagenverfügbarkeit immer mehr an Bedeutung. Bedingt durch die derzeit noch hohen Kosten wird diese Herstellungsmethode bevorzugt für komplexe, konventionell kaum oder nur sehr aufwendig herstellbare Teile in Bereichen wie Luftfahrt oder Medizintechnik angewendet. Gerade in derartigen Anwendungen werden aber hohe Anforderungen an die Bauteileigenschaften gestellt. Am Beispiel des für Triebwerkslager häufig verwendeten warmfesten Einsatzstahls M50NiL werden die Entwicklung eines AM-Prozesses und die Eigenschaften derartig gefertigter Teile beschrieben. Ein Vergleich mit konventionell gefertigten Proben zeigt, dass die mittels Lichtmikroskopie, Härtemessung, Zugversuchen und Überrollversuchen ermittelten Eigenschaften von AM-gefertigten Proben aus M50NiL mit denen konventionell gefertigter Teile vergleichbar sind.


4 (Corresponding author/Kontakt)

References

1. Averbach, B. L.; Bingzhe, L.; Pearson, P. K.; Fairchild, R. E.; Bamberger, E. N.: Fatigue Crack Propagation in Carburized High Alloy Bearing Steels. Met. Trans. A16 (1985) 7, pp. 12531265, 10.1007/bf02670330 Search in Google Scholar

2. Beer, O.: Experiences in Heat Treatment of Heat Resistant Carburizing Bearing Steels. HTM J. Heat Treatm. Mat.73 (2018) 1, pp. 2740, 10.3139/105.110348 Search in Google Scholar

3. Scheitler, C.; Rothfelder, R.; Rasch, M.; Ahuja, B.; Schmidt, M.; Merklein, C.; Beer, O.: Laser Beam Melting of M50NiL: Influence of Inert Gas Flow on Resulting Part Properties. Proc. 6th Int. Conf. on Additive Technologies iCAT2016, 29–30.11.16, Nuremberg, Germany, I. Drstvenšek et al. (eds.), 2016, pp. 5160 Search in Google Scholar

4. Glöckner, P.; Dullenkopf, K.; Flouros, M.: Direct Outer Ring Cooling of a High Speed Jet Engine Mainshaft Ball Bearing: Experimental Investigation Results. Proc. Turbo Expo 2010: Power for Sea and Air, 14–18.06.10, Glasgow, UK, ASME, NY, USA, 2010, Vol. 4: Heat Transfer, Part B, pp. 120912016 Search in Google Scholar

5. Schatt, W.; Wietes, K.-P.; Kiebeck, B.: Pulvermetallurgie, Technologien und Werkstoffe. 2nd ed., Springer, Berlin, 2000 Search in Google Scholar

6. Bocanegra-Bernal, M. H.: Hot Isostatic Pressing (HIP) technology and its applications to metals and ceramics. J. Mater. Sci.39 (2004) 21, pp. 63996420, 10.1023/b:jmsc.0000044878.11441.90 Search in Google Scholar

7. Johnson, K. J.: Contact Mechanics. Cambridge University Press, Cambridge, UK, 1988 Search in Google Scholar

8. Vlcek, B. L.; Zaretsky, E. V.: Rolling-Element Fatigue Testing and Data Analysis. NASA John H. Glenn Research Center at Lewis Field, Cleveland, OH, USA, 2011 Search in Google Scholar

9. Fischer-Cripps, A. C.: Introduction to Contact Mechanics. Springer, New York, NY, USA, 2000, 10.1007/b97709 Search in Google Scholar

10. Gegner, J.; Nierlich, W.: Comparison of Microstructural Changes and X-ray Diffraction Peak Width Decrease during Rolling Contact Fatigue in Martensitic Microstructures. In: Bearing Steel Technologies, proc. 9th Int. Symp. on Bearing Steels, 17–18.11.11, Tampa, FL, USA, 2011, ASTM STP 1548, 2012, pp. 303328, 10.1520/STP104650 Search in Google Scholar

11. Beer, O.: Structural Changes Induced by Rolling Contact Fatigue – Results from Rig Testing and Filed Experience. HTM J. Heat Treatm. Mat72 (2017) 4, pp. 205214, 10.3139/105.110314 Search in Google Scholar

Published Online: 2018-08-28
Published in Print: 2018-08-16

© 2018, Carl Hanser Verlag, München