Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 9, 2019

Manganese Alloyed Q & T Steel with high Hardenability for Forging Parts with large Diameters

Mangan-legierter Vergütungsstahl mit hoher Durchhärtbarkeit für Schmiedebauteile mit großen Querschnitten
A. Gramlich, A. Stieben, M. Menzel, F. Pape, B. Lüneburg and W. Bleck

Abstract

A new quenching and tempering steel is presented and compared with reference alloys 42CrMo4 and AISI 4140. Through the substitution of chromium (− 0.7 wt.-%) by manganese (+ 1.3 wt.-%) high hardness could be guaranteed by reduced alloying costs. Hardness gradients are shown in the Jominy-test for the reference alloys, while the new alloy shows nearly a constant hardness of 600 HV10. The inductive hardenability was tested using a dilatometer. The new alloy shows a hardness of 780 HV which is 60 HV10 higher than the reference alloys. The critical cooling rate was reduced from 19 K/s for the reference alloys to 9 K/s for the new alloy.

Kurzfassung

Ein neuer Vergütungsstahl mit einem Mangangehalt von 2 Gew.-% wird hinsichtlich mechanischer Eigenschaften und Härtbarkeit mit den Referenzgüten 42CrMo4 und AISI 4140 verglichen. Durch die Substituierung von Chrom (− 0,7 Gew.-%) durch Mangan (+ 1,3 Gew.-%) kann eine hohe Härte gewährleistet werden bei gleichzeitiger Reduzierung der Legierungskosten. Während die Referenzgüten im Jominy-Versuch einen Gradienten über die Messlänge aufweisen, zeigt der neue Werkstoff eine nahezu konstante Härte von 600 HV10. Die induktive Härtbarkeit wurde mithilfe von Dilatometerversuchen getestet, wobei die neue Legierung einen Wert von ca. 780 HV10 und damit eine um 60 HV10 höhere Härte als die Referenzgüten erreicht. Die kritische Abkühlgeschwindigkeit konnte von 19 K/s bei den Referenzgüten auf 9 K/s für die neue Legierung gesenkt werden.


5 (corresponding author/Kontakt)

Literatur

1. Cohen, M.: The Strengthening of Steel. Trans. AIME224 (1962), pp. 638657Search in Google Scholar

2. Moser, A.; Legat, A.: Die Berechnung der Härtbarkeit aus der chemischen Zusammensetzung. HTM – Härterei-Techn. Mitt.24 (1969) 2, pp. 100105Search in Google Scholar

3. Grange, R.; Hribal, C.; Porter, L.: Hardness of Tempered Martensite in Carbon and Low-Alloy Steels. Metall. Mater. Trans.A 8 (1977), pp. 17751785, 10.1007/BF02646882Search in Google Scholar

4. Krauss, G.: Martensite in Steel: strength and structure. Mat. Sci. Eng.A 273–275 (1999), pp. 4057, 10.1016/S0921-5093(99)00288-9Search in Google Scholar

5. Tawara, S.: Effects of various elements on hardening of steel (Report I). Tetsu-to-Hagane23 (1937) 9, pp. 87590910.2355/tetsutohagane1915.23.9_875Search in Google Scholar

6. Stieben, A.; Bleck, W.; Schönborn, S.: Lufthärtender duktiler Stahl mit mittlerem Mangangehalt für die Massivumformung. massivUMFORMUNG (2016) 9, pp. 5055Search in Google Scholar

7. Gramlich, A.; Emmrich, R.; Bleck, W.: Austenite Reversion Tempering-Annealing of 4 wt.% Manganese Steels for Automotive Forging Application. Metals9 (2019) 5, p. 575, 10.3390/met9050575Search in Google Scholar

8. Schifferl, H.; Zamberger, S.; Jöller, A.: Substitution von teuren Legierungselementen bei Edelbaustählen. BHM155 (2010), pp. 201206, 10.1007/s00501-010-0563-xSearch in Google Scholar

9. Schifferl, H.; Zamberger, S.; Jöller, A.: Kostenoptimierung durch Änderung der Legierungszuschläge für wärmebehandelte Baustähle. J. Heat Treatm. Mat.67 (2012) 4, pp. 251256, 10.3139/105.110160Search in Google Scholar

10. Jaffe, L. D.; Gordon, E.: Temperability of Steels. Trans ASM49 (1957), pp. 359369Search in Google Scholar

11. Hutchinson, B.; Hagström, J.; Karlsson, O.; Lindell, D.; Tornberg, M.; Lindberg, F.; Thuvander, M.: Microstructures and hardness of as-quenched martensites (0.1–0.5 %C). Acta Materialia59 (2011), pp. 58455858, 10.1016/j.actamat.2011.05.061Search in Google Scholar

12. Appen, J. v.; Dronskowski, R.: Carbon-Induced Ordering in Manganese-Rich Austenite – A Density-Functional Total-Energy and Chemical-Bonding Study. Steel Res. Int.82 (2011) 2, pp. 101107, 10.1002/srin.201000260Search in Google Scholar

13. Timmerscheid, T. A.; Dronskowski, R.: An Ab Initio Study of Carbon-Induced Ordering in Austenitic Fe–Mn–Al–C Alloys. Steel Res. Int.88 (2017) 1, p. 1600292, 10.1002/srin.201600292Search in Google Scholar

14. Vieweg, A.; Ressel, G.; Prevedel, P.; Marsoner, S.; Ebner, R.: Effects of the Inductive Hardening Processe on the Martensitic Structure of a 50CrMo4. HTM J. Heat Treatm. Mat.72 (2017) 1, pp. 39, 10.3139/105.110308Search in Google Scholar

15. Bolton, J.; Petty, E.; Allen, G.: The mechanical properties of a-phase low carbon Fe-Mn alloys. Metall. Mater. Trans. B2 (1971), pp. 29152923, 10.1007/BF02813271Search in Google Scholar

16. Song, S.; Faulkner, R.; Flewitt, P.: Quenching and tempering-induced molybdenum segregation to grain boundaries in a 2.25Cr–1Mo steel. Mater. Sci. Eng. A281 (2000), pp. 2327, 10.1016/S0921-5093(99)00735-2Search in Google Scholar

17. Krauss, G.; Marder, A.: The Morphology of Martensite in Iron Alloys. Metall. Mater. Trans. B2 (1971), pp. 23432357, 10.1007/BF02814873Search in Google Scholar

18. Waterschoot, T.; Verbeken, K.; De Cooman, B.: Tempering Kinetics of the Martensitic Phase in DP Steel. ISIJ International46 (2006), pp. 138146, 10.2355/isijinternational.46.138Search in Google Scholar

19. Könemann, M.; Brinnel, V.; Henrich, M.; Münstermann, S.: A method for component-oriented toughness analysis of modern multiphase steels. Procedia Structural Integrity13 (2018), pp. 914919, 10.1016/j.prostr.2018.12.172Search in Google Scholar

Published Online: 2019-12-09
Published in Print: 2019-12-11

© 2019, Carl Hanser Verlag, München

Scroll Up Arrow