Accessible Unlicensed Requires Authentication Published by De Gruyter August 10, 2020

Influence of Heat Treatment and Precipitation on the Former Austenite Grain Size in Cold Forged, Case-Hardened Steel Components∗

Einfluss der Wärmebehandlung und Ausscheidungen auf die ehemalige Austenitkorngröße bei kaltmassivumgeformten, einsatzgehärteten Stahlbauteilen
S. Glamsch, A. Ledig, C. Felber, A. Schuster and H.-W. Raedt

Abstract

In case-hardened steel components, fine-grain stability is one of the most important properties of the microstructure, since a single coarse grain in a fine-grain matrix is often sufficient to cause premature failure of the component under appropriate loading. In order to better understand the influence of heat treatments on cold formed components, the case hardened microstructure of 16 different heat treatment combinations was investigated on the case hardening steel 20MnCr5 (1.7168). The process chain influences grain growth inhibiting precipitations, which in turn influence the fine grain stability. For this reason, aluminium nitrides in size ranges from approx. 15 to 250 nm were analysed in two samples using high-resolution scanning electron microscopy in both fine and coarse-grained areas. The respective areas examined had an average area of 1,250−2,000 μm2. The statistical analysis showed that within the samples no significant difference in morphology and density between aluminium nitrides in fine and coarse-grained areas could be found. On the other hand, more clusters appear in larger grains. Furthermore, a significant influence of the heat treatments on the aluminium nitrides could be detected.

Kurzfassung

In einsatzgehärteten Stahlbauteilen ist die Feinkornstabilität eine der wichtigsten Eigenschaften des Gefüges, da oftmals ein einzelnes grobes Korn in einer feinkörnigen Matrix genügt, um bei entsprechender Belastung zum vorzeitigen Versagen des Bauteils zu führen. Um den Einfluss von Wärmebehandlungen an kaltumgeformten Bauteilen besser zu verstehen, wurde das einsatzgehärtete Gefüge von 16 verschiedenen Wärmebehandlungskombinationen am Einsatzstahl 20MnCr5 (1.7168) untersucht. Die Prozesskette beeinflusst kornwachstumshemmende Ausscheidungen, die ihrerseits die Feinkornstabilität beeinflussen. Deshalb wurden in zwei Proben Aluminiumnitride in Größenbereichen von ca. 15 bis 250 nm mittels hochauflösender Rasterelektronenmikroskopie in fein- sowie grobkörnigen Bereichen analysiert. Die jeweiligen untersuchten Bereiche hatten eine Fläche von im Durchschnitt 1.250–2.000 μm2. In der statistischen Auswertung ergab sich, dass innerhalb der Proben kein signifikanter Unterschied in der Morphologie und Dichte zwischen Aluminiumnitriden in Fein- und Grobkornbereichen gefunden werden kann. Dafür scheinen mehr Cluster in größeren Körnern aufzutreten. Zudem konnte ein signifikanter Einfluss der Wärmebehandlungen auf die Aluminiumnitride erkannt werden.


2 (corresponding author/Kontakt)

Lecture held at the HeatTreatingCongress, HK; October 22–24, 2019 in Cologne, Germany


References

1. Trute, S.: Einfluss der Prozesskette auf die Feinkornbeständigkeit von mikrolegierten Einsatzstählen. Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, 2008 Search in Google Scholar

2. Diemar, A.: Simulation des Einsatzhärtens und Abschätzung der Dauerfestigkeit einsatzgehärteter Bauteile. Dissertation, Bauhaus-Universität Weimar, Weimar, 2007 Search in Google Scholar

3. Li, Y.; Bushby, J.; Dunstan, D. J.: The Hall-Petch effect as a manifestation of the general size effect. Proc. R. Soc. A472 (2016) 2190, 20150890, 10.1098/rspa.2015.0890 Search in Google Scholar

4. Kundu, A.: Austenite grain boundary pinning during reheating by mixed AlN and Nb (C, N) particles. ISIJ international54 (2014) 3, pp. 677684, 10.2355/isijinternational.54.677 Search in Google Scholar

5. Russel, K. C.: Precipitate coarsening and grain growth in steels. Massachusetts Institute of Technology77 (2003), open access Search in Google Scholar

6. Schwarz, M.; Kipp, D.: Prozess- und Materialoptimierung durch Wärmebehandlung im Walzprozess. Prozesswärme (2018) 6, pp. 101104 Search in Google Scholar

7. Zhang, L.; Guo, D. C.: A general etchant for revealing prior-austenite grain boundaries in steels. Materials characterization30 (1993) 4, pp. 299302, 10.1016/1044-5803(93)90078-A Search in Google Scholar

8. Klenke, K.; Kohlmann, R.; Wilke, F.: Feinkornbeständigkeit des Stahls 20NiMoCr6-5+Nb (Werkstoff-Nr. 1.6757) beim Einsatzhärten in Abhängigkeit einer Kaltmassivumformung. HTM J. Heat Treatm. Mat.74 (2019) 5, pp. 302316, 10.3139/105.110393 Search in Google Scholar

9. Wilson, F. G.; Gladman, T.: Aluminium nitride in steel. Int. Mater. Rev.33 (1988) 1, pp. 221286, 10.1179/imr.1988.33.1.221 Search in Google Scholar

10. Klenke, K.; Kohlmann, R.: Einsatzstähle in ihrer Feinkornbeständigkeit, heute und morgen. HTM J. Heat Treatm. Mat.60 (2005) 5, pp. 260270, 10.3139/105.100348 Search in Google Scholar

11. Chang, K.; Feng, W.; Chen, L. Q.: Effect of second-phase particle morphology on grain growth kinetics. Acta Mater.57 (2009) 17, pp. 52295236, 10.1016/j.actamat.2009.07.025 Search in Google Scholar

12. Fu, L. M.; Wang, H. R.; Wang, W.; Shan, A. D.: Austenite grain growth prediction coupling with drag and pinning effects in low carbon Nb microalloyed steels. Mater. Sci. Technol.27 (2011) 6, pp. 9961001, 10.1179/1743284711Y.0000000001 Search in Google Scholar

13. Maalekian, M.; Radis, R.; Militzer, M.; Moreau, A.; Poole, W.: In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel. Acta Mater.60 (2012) 3, pp. 10151026, 10.1016/j.actamat.2011.11.016 Search in Google Scholar

14. Moon, J.; Lee, J.; Lee, C.: Prediction for the austenite grain size in the presence of growing particles in the weld HAZ of Ti-microalloyed steel. Mater. Sci. Eng.459 (2007) 1–2, pp. 4046, 10.1016/j.msea.2006.12.073 Search in Google Scholar

15. Clausen, B.; Kohlmann, R.; Hoffmann, F.: Influence of production process chain on grain size stability of a microalloyed 20CrMo5 case hardening steel. Int. Heat Treat. Surf. Eng.4 (2010) 4, pp. 166170, 10.1179/174951410x12851626813050 Search in Google Scholar

16. San Martín, D.; Caballero, F. G.; Capdevila, C.; De Andres, C. G.: Austenite grain coarsening under the influence of niobium carbonitrides. Mater. Trans.45 (2004) 9, pp. 27972804, 10.2320/matertrans.45.2797 Search in Google Scholar

17. Cheng, L. M. L.: Study of the kinetics of precipitation, dissolution and coarsening of aluminium nitride in low carbon steels. Dissertation, University of British Columbia, Vancouver, Canada, 1999 Search in Google Scholar

18. Vanherpe, L.; Moelans, N.; Blanpain, B.; Vandewalle, S.: Pinning effect of spheroid second-phase particles on grain growth studied by three-dimensional phase-field simulations. Comput. Mater. Sci.49 (2010) 2, pp. 340350, 10.1016/j.commatsci.2010.05.020 Search in Google Scholar

19. Silva, C. A.; Nakamura, L.; Rizzo, F.: Application of computational modeling to the kinetics of precipitation of aluminium nitride in steels. J. Min. Metall. Sect. B-Metall.48 (2012) 3, pp. 471476, 10.2298/JMMB120703058E Search in Google Scholar

Published Online: 2020-08-10
Published in Print: 2020-08-13

© 2020, Carl Hanser Verlag, München