Accessible Unlicensed Requires Authentication Published by De Gruyter August 10, 2020

Investigation of the Application of a C-ring Geometry to validate the Stress Relief Heat Treatment Simulation of Additive Manufactured Austenitic Stainless Steel Parts via Displacement∗

Untersuchung der Anwendung einer C-Ring-Geometrie zur Validierung der Simulation der Spannungsarmglühbehandlung von additiv hergestellten Teilen aus austenitischem rostfreiem Stahl durch Verschiebung
B. El-Sari, M. Biegler and M. Rethmeier

Abstract

Directed energy deposition is a metal additive manufacturing process that builds parts by joining material in a layer-by-layer fashion on a substrate. Those parts are exposed to rapid thermo-cycles which cause steep stress gradients and the layer-upon-layer manufacturing fosters an anisotropic microstructure, therefore stress relief heat treatment is necessary. The numerical simulation can be used to find suitable parameters for the heat treatment and to reduce the necessary efforts to perform an effective stress relieving. Suitable validation experiments are necessary to verify the results of the numerical simulation.

In this paper, a 3D coupled thermo-mechanical model is used to simulate the heat treatment of an additive manufactured component to investigate the application of a C-ring geometry for the distortion-based validation of the numerical simulation. Therefore, the C-ring samples were 3D scanned using a structured light 3D scanner to quantify the distortion after each process step.

Kurzfassung

Directed Energy Deposition – gerichtete Energieeinbringung – ist ein Metall-additives Fertigungsverfahren, das Teile durch schichtweises Verbinden von Material auf einem Substrat aufbaut. Diese Teile werden schnellen Thermozyklen ausgesetzt, die steile Spannungsgradienten verursachen, zugleich fördert die Schicht-auf-Schicht-Fertigung eine anisotrope Mikrostruktur, weshalb eine Spannungsarmglühbehandlung erforderlich ist. Die numerische Simulation kann verwendet werden, um geeignete Parameter für die Wärmebehandlung zu finden und den notwendigen Aufwand für ein effektives Spannungsarmglühen zu reduzieren. Geeignete Validierungsexperimente sind notwendig, um die Ergebnisse der numerischen Simulation zu verifizieren.

In dieser Arbeit wird ein 3D-gekoppeltes thermo-mechanisches Modell verwendet, um die Wärmebehandlung eines additiv hergestellten Bauteils zu simulieren, um so die Anwendung einer C-Ring-Geometrie für die verzugsbasierte Validierung der numerischen Simulation zu untersuchen. Dafür wurden die C-Ring-Proben mit einem 3D-Scanner mit strukturiertem Licht 3D-gescannt, um die Verformung nach jedem Prozessschritt zu quantifizieren.


3 (corresponding author/Kontakt)

Reworked version of a lecture held at the Simulationsforum 2019 Schweißen und Wärmebehandlung, November 5–7, 2019, Weimar, Germany


References

1. DIN EN ISO/ASTM 52900:2017-06: Additive Fertigung. Grundlagen, Terminologie, Beuth, Berlin, 2017Search in Google Scholar

2. Graf, B.; Schuch, M.; Kersting, R.; Gumenyuk, A.; Rethmeier, M.: Additive process chain using selective laser melting and laser metal deposition. Proc. Lasers in Manufacturing Conf. 2015, 22.-25.06.15, Munich, WLT, open accessSearch in Google Scholar

3. Leunda, J.; Soriano, C.; Sanz, C.; Navas, V. G.: Laser Cladding of Vanadium-Carbide Tool Steels for Die Repair. Physics Procedia12 (2011), pp. 345352, 10.1016/j.phpro.2011.03.044Search in Google Scholar

4. Graf, B.; Gumenyuk, A.; Rethmeier, M.: Laser Metal Deposition as Repair Technology for Stainless Steel and Titanium Alloys. Physics Procedia39 (2012), pp. 376381, 10.1016/j.phpro.2012.10.051Search in Google Scholar

5. Li, C.; Liu, Z. Y.; Fang, X. Y.; Guo, Y. B.: Residual Stress in Metal Additive Manufacturing. Procedia CIRP71 (2018), pp. 348353, 10.1016/j.procir.2018.05.039Search in Google Scholar

6. Hitzler, L.; Hirsch, J.; Heine, B.; Merkel, M.; Hall, W.; Öchsner, A.: On the Anisotropic Mechanical Properties of Selective Laser-Melted Stainless Steel. Materials10 (2017) 10, pp. 11361155Search in Google Scholar

7. Knowles, C. R.; Becker, T. H.; Tait, R. B.: The effect of heat treatment on the residual stress levels within direct metal laser sintered Ti-6Al-4 V as measured using the hole-drilling strain gauge method. Proc. 13th Int. RAPDASA Conf. 2012, 31.10-02.11.12, Sun City, South Africa, Rapid Product Development Association of South Africa, 2012, pp. 110Search in Google Scholar

8. Etter, T.; Kunze, K.; Geiger, F.; Meidani, H.: Reduction in mechanical anisotropy through high temperature heat treatment of Hastelloy x processed by Selective Laser Melting (SLM). IOP Conference Series: Materials Science and Engineering82 (2015), 012097, 10.1088/1757-899x/82/1/012097, open accessSearch in Google Scholar

9. Davis, J. R.: Heat treating. 10th ed., ASM, Materials Park, Ohio, USA, 2007Search in Google Scholar

10. Kawasaki, S.; Hishinuma, A.: Effect of Condition of Recrystallization Heat Treatment on High-Temperature Mechanical Properties of an Irradiated AISI 316 Austenitic Steel. J. Nucl. Sci. Technol.11 (1974) 11, pp. 505509, 10.1080/18811248.1974.9730701Search in Google Scholar

11. Kumar, B. R.; Sharma, S.: Recrystallisation Characteristics of Cold Rolled Austenitic Stainless Steel during Repeated Annealing. Mater. Sci. Forum753 (2013), pp. 157162, 10.4028/www.scientific.net/msf.753.157Search in Google Scholar

12. Choi, J. S.; Yoon, D. Y.: The Temperature Dependence of Abnormal Grain Growth and Grain Boundary Faceting in 316L Stainless Steel. ISIJ International41 (2001) 5, pp. 478483, 10.2355/isijinternational.41.478Search in Google Scholar

13. Montero Sistiaga, M. L.; Nardone, S.; Hautfenne, C.; Van Humbeeck, J.: Effect of Heat Treatment Of 316L Stainless Steel Produced by Selective Laser Melting (SLM). Proc. 27th Annual Int. Solid Freeform Fabrication Symp. – An Additive Manufacturing Conference 2016, 08–10.08.16, Austin, Texas, USA, TMS, 2016, pp. 558565Search in Google Scholar

14. Weißbach, W.: Werkstoffkunde. Strukturen, Eigenschaften, Prüfung. 17th ed., Springer, Wiesbaden, 2010, 10.1007/978-3-658-03919-6Search in Google Scholar

15. Biegler, M.; Marko, A.; Graf, B.; Rethmeier, M.: Finite element analysis of in-situ distortion and bulging for an arbitrarily curved additive manufacturing directed energy deposition geometry. Additive Manufact.24 (2018), pp. 264272, 10.1016/j.addma.2018.10.006Search in Google Scholar

16. Zoch, H.-W.: Distortion engineering: vision or ready to application? Materialwiss. Werkstofftechn.40 (2009) 5–6, pp. 342348, 10.1002/mawe.200900457Search in Google Scholar

17. Radaj, D.: Schweißprozeßsimulation. Grundlagen und Anwendungen.Vol. 141, DVS, Düsseldorf, 1999Search in Google Scholar

18. Inoue, T.; Arimoto, K.: Development and implementation of cae system “hearts” for heat treatment simulation based on metallo-thermo-mechanics. J. Mater. Eng. Perform.6 (1997) 1, pp. 5160, 10.1007/s11665-997-0032-1Search in Google Scholar

19. Xu, Y.; Liu, H.; Bao, R.; Zhang, X.: Residual stress evaluation in welded large thin-walled structures based on eigenstrain analysis and small sample residual stress measurement. Thin-Walled Structures131 (2018), pp. 782791, 10.1016/j.tws.2018.07.049Search in Google Scholar

20. Kandil, F. A.; Lord, J. D.; Fry, A. T.; Grant, P. V.: A Review of Residual Stress Measurement Methods. Measurement of Residual Stress in Components. Report MATC (2002) (A) 4, NPL, Teddington, UK, 2002, open accessSearch in Google Scholar

21. Rossini, N. S.; Dassisti, M.; Benyounis, K. Y.; Olabi, A. G.: Methods of measuring residual stresses in components. Mater. & Des.35 (2012), pp. 572588, 10.1016/j.matdes.2011.08.022Search in Google Scholar

22. Papadakis, L.; Hauser, C.: Experimental and computational appraisal of the shape accuracy of a thin-walled virole aero-engine casing manufactured by means of laser metal deposition. Product. Eng.11 (2017) 4–5, pp. 389399, 10.1007/s11740-017-0746-3Search in Google Scholar

23. Biegler, M.; Graf, B.; Rethmeier, M.: Assessing the predictive capability of numerical additive manufacturing simulations via in-situ distortion measurements on a LMD component during buildup. Procedia CIRP74 (2018), pp. 158162, 10.1016/j.procir.2018.08.069Search in Google Scholar

24. Salonitis, K.; D'Alvise, L.; Schoinochoritis, B.; Chantzis, D.: Additive manufacturing and post-processing simulation: laser cladding followed by high speed machining. Int. J. Adv. Manufact. Technol.85 (2016) 9–12, pp. 24012411, 10.1007/s00170-015-7989-ySearch in Google Scholar

25. Manivannan, M.; Northwood, D. O.; Stoilov, V.: Use of Navy C-rings to study and predict distortion in heat treated components: experimental measurements and computer modelling. Int. Heat Treatm. Surf. Eng.8 (2014) 4, pp. 168175, 10.1179/1749514814z.000000000119Search in Google Scholar

26. Hardin, R. A.; Beckermann, C.: Simulation of Heat Treatment Distortion. Proc. 59th Technical and Operating Conf. 2005, 03.-05.11.05, Chicago, IL, USA, Steel Founders’ Society of America, 2005, pp. 132, open accessSearch in Google Scholar

27. da Silva, A. D.; Pedrosa, T. A.; Gonzalez-Mendez, J. L.; Jiang, X.; Cetlin, P. R.; Altan, T.: Distortion in quenching an AISI 4140 C-ring – Predictions and experiments. Mater. & Des.42 (2012), pp. 5561, 10.1016/j.matdes.2012.05.031Search in Google Scholar

28. Morales, B. H.; Mendez, O. B.; Cruz, A. I.; Godinez, J. B.: Mathematical modelling of temperature and stress evolution during cooling of a stainless steel Navy C-ring probe. Intern. J. Mater. Product Technol.24 (2005) 1/2/3/4, pp. 306318, 10.1504/ijmpt.2005.007957Search in Google Scholar

29. Foroozmehr, E.; Kovacevic, R.: Effect of path planning on the laser powder deposition process: thermal and structural evaluation. Int. J. Adv. Manufact. Technol.51 (2010) 5–8, pp. 659669, 10.1007/s00170-010-2659-6Search in Google Scholar

30. Bauccio, M.: ASM metals reference book. 3rd ed., ASM, Materials Park, Ohio, USA1994Search in Google Scholar

31. Biegler, M.; Graf, B.; Rethmeier, M.: In-situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using numerical simulations. Additive Manufact.20 (2018), pp. 101110, 10.1016/j.addma.2017.12.007Search in Google Scholar

32. Janosch, J. J.: IIW round robin protocol for residual stress and distortion prediction. phase II (proposal rev. 1), 2000Search in Google Scholar

33. Callister, W. D.; Rethwisch, D. G.: Materials science and engineering. SI version, 8th ed., Wiley, Hoboken, NJ, 2011Search in Google Scholar

34. Holdsworth, S. R.; Merckling, G.: ECCC Developments in the Assessment of Creep-Rupture Properties. citeseerx, open accessSearch in Google Scholar

35. Zhang, Z.; Ge, P.; Zhao, G. Z.: Numerical studies of post weld heat treatment on residual stresses in welded impeller. Int. J. Pressure Vessels and Piping153 (2017), pp. 114, 10.1016/j.ijpvp.2017.05.005Search in Google Scholar

36. McQueen, H. J.; Ryan, N. D.: Constitutive analysis in hot working. Mater. Sci. Eng. A322 (2002) 1–2, pp. 4363, 10.1016/s0921-5093(01)01117-0Search in Google Scholar

37. MSC Software Corporation: Marc 2016. Volume A: Theory and User Information, 2016Search in Google Scholar

38. Nassour, A.; Bose, W. W.; Spinelli, D.: Creep Properties of Austenitic Stainless-Steel Weld Metals. J. mater. Eng. Perform.10 (2001) 6, pp. 693698, 10.1361/105994901770344566Search in Google Scholar

39. Tolosa, I.; Garciandía, F.; Zubiri, F.; Zapirain, F.; Esnaola, A.: Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting”, following different manufacturing strategies. Int. J. Adv. Manufact. Technol.51 (2010) 5–8, pp. 639647, 10.1007/s00170-010-2631-5Search in Google Scholar

Published Online: 2020-08-10
Published in Print: 2020-08-13

© 2020, Carl Hanser Verlag, München