Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 2, 2020

Mechanical Deformation and Heat Treatment Processing of Twin Roll Cast and Melt Processed Al-5 wt.% Mg Alloy Strips

Mechanische Verformungs- und Wärmebehandlungsverfahren von gegossenen und schmelzverarbeiteten Al-5 Gew.-% Mg-Legierungsbändern
  • B. K. Dhindaw , N. Gupta , N. Barekar and A. Mandal

Abstract

Twin-roll casting (TRC) is a set up applied to manufacture sheets of aluminium alloys. In spite of huge potential, extreme centerline segregation emerges during casting. This segregation limits the range of alloys suitable for commercial applications. To enhance the quality of the TRC strips, another innovation– the melt-conditioning twin-roll casting (MCTRC) – has been used. Cold rolling followed by homogenization heat treatment of the MCTRC strip results in more uniform solute distribution across the thickness of the strip, leading to strips of higher quality as compared to the conventional TRC strip.

Kurzfassung

Das Twin-Roll-Casting (TRC) ist ein Verfahren zur Herstellung von Blechen aus Aluminiumlegierungen. Trotz des großen Potenzials kommt es beim Gießen zu einer starken Seigerung der Mittellinie. Diese Seigerung schränkt das Spektrum der für kommerzielle Anwendungen geeigneten Legierungen ein. Um die Qualität der TRC-Bänder zu verbessern, wurde eine weitere Entwicklung – das schmelzkonditionierende Twin Roll Casting (MCTRC) – eingesetzt. Kaltwalzen mit anschließender Homogenisierungswärmebehandlung des MCTRC-Bandes führt zu einer gleichmäßigeren Verteilung der gelösten Legierungselemente über die Dicke des Bandes, was im Vergleich zum herkömmlichen TRC-Band zu einer besseren Bandqualität führt.


3 (corresponding author/Kontakt)

References

1. Emley, E. F.: Continuous casting of aluminium. Inter. Mater. Rev.21 (1976) 1, pp. 75115, 10.1179/imtr.1976.21.1.75Search in Google Scholar

2. Bessemer, H.: Improvement in the manufacture of iron and steel. U. S. Patent 49053, 1865Search in Google Scholar

3. Ferry, M.: Direct strip casting of metals and alloys – Processing, microstructure and properties. Woodhead Publishing, Ltd., Cambridge, UK, 2006Search in Google Scholar

4. Barekar, N. S.; Dhindaw, B. K.: Twin roll casting of Al alloys – An overview. Mater. Manuf. Process29 (2014), pp. 651661, 10.1080/10426914.2014.912307Search in Google Scholar

5. Lockyer, S. A.; Yun, M.; Hunt, J. D.; Edmonds, D. V.: Micro- and macro defects in thin sheet twin-roll cast aluminium alloys. Mater. Char.37 (1996), pp. 301310, 10.1016/S1044-5803(97)80019-8Search in Google Scholar

6. Barekar, N. S.; Das, S.; Fan, Z.: Melt conditioned twin roll casting (MCTRC) for aluminium alloys. Mater. Sci. Forum794–796 (2014), pp. 11151120. 10.4028/www.scientific.net/MSF.794-796.1115Search in Google Scholar

7. Barekar, N. S.; Das, S.; Yang, X.; Huang, Y.; El Fakir, O.; Bhagurkar, A. G.; Zhou, L.; Fan, Z.: The impact of melt conditioning on microstructure, texture and ductility of twin roll cast aluminium alloy strips. Mater. Sci. Eng. A650 (2016), pp. 365373, 10.1016/j.msea.2015.10.079Search in Google Scholar

8. Sanders Jr., R. E.: Technology innovation in aluminium products. JOM53 (2001) 2, pp. 2125, 10.1007/s11837-001-0115-7Search in Google Scholar

9. Patel, J.; Zuo, Y.; Fan, Z.: Liquid metal engineering by application of intensive melt shearing. Proc. of the 2013 Int. Symposium on Liquid Metal Processing and Casting. 22.-25.09.13, Austin, Texas, USA, M. J. M.Krane, A.Jardy, R. L.Williamson, J. J.Beaman (eds.), TMS, 2013, pp. 291299, 10.1007/978-3-319-48102-9_42Search in Google Scholar

10. Das, S.; Barekar, N. S.; El Fakir, Omer; Wang, L.; Rao, A. K. Prasada; Patel, J. B.; Kotadia, H. R.; Bhagurkar, A.; Dear, J. P.; Fan, Z.: Effect of melt conditioning on heat treatment and mechanical properties of AZ31 alloys produced by twin roll casting. Mater. Sci. Eng. A (2014) 620 (2015), pp. 22323, 10.1016/j.msea.2014.10.019Search in Google Scholar

11. Porter, D. A.; Easterling, K. E.: Phase transformation in metal and alloys. 2nd ed., CRC Press, Baco Raton, Florida, USA, 1992. – ISBN: 978-0748757411Search in Google Scholar

12. Dunne, D. P.; Paraloma, E. V.; Yazdipour, N.: Effect of grain size on hydrogen diffusion process in steel using cellular automation approach. Materials Science Forum (2012), pp. 706709, 1568–1573, 10.4028/www.scientific.net/MSF.706-709.1568Search in Google Scholar

13. Lea, C.; Molinari, C.: Magnesium diffusion, surface segregation and oxidation in AI-Mg alloys. J. Mat. Sc.19 (1984), pp. 23362352, 10.1007/BF01058110Search in Google Scholar

14. Lakner, J.; Györök, G.; Kováts, R.; Varga, V.; Oláh, Z.: Calculation of Homogenization Degree in Aluminium Alloys Using the Diffusion Parameter Approximation. Proc. Int. Symposiumon Applied Machine Intelligence and Informatics. 26.-28.01.12, Herl‘any, Slovakia, IEEE, Piscataway, NJ, USA, 2012, 10.1109/SAMI.2012.6208997Search in Google Scholar

Published Online: 2020-12-02
Published in Print: 2020-12-10

© 2020, Carl Hanser Verlag, München

Downloaded on 21.2.2024 from https://www.degruyter.com/document/doi/10.3139/105.110427/pdf
Scroll to top button