Accessible Unlicensed Requires Authentication Published by De Gruyter May 5, 2013

Comparison between Interaction Forces at Air/Liquid and Solid/Liquid Interfaces in the Presence of Non-Ionic Surfactants

Vergleich der Wechselwirkungskräfte an luft/flüssig- und fest/flüssig-Grenzflächen in Gegenwart nichtionischer Tenside
C. Stubenrauch, J. Schlarmann, O. J. Rojas and P. M. Claesson


Interactions in thin liquid foam films and between solid/liquid surfaces coated with the non-ionic surfactant hexaoxyethylene dodecylether (C12 E6) were investigated with a TFPB (thin film pressure balance) and the MASIF (Measurement and Analysis of Surface Interaction Forces) technique, respectively. For foam films the formation of common black films (CBF) and Newton black films (NBF) was observed depending on the surfactant concentration and the applied pressure. With increasing surfactant concentration and increasing pressure the CBF is destabilized, whereas a stabilization of the NBF is observed. In addition, MASIF measurements with two different hydrophobic surfaces were made. In one case silanated glass surfaces and in the other case thiolated gold surfaces were used. Differences and similarities of the interactions between these two surfaces are shown and discussed. Furthermore, the results of the MASIF measurements are compared with the ones of the thin film pressure balance measurements and the influence of the surfactant concentration on the interactions is discussed.


Mit einer TFPB (thin film pressure balance) und der MASIF (Measurement and Analysis of Surface Interaction Forces) Technik wurden Wechselwirkungen in freistehenden Schaumfilmen und zwischen fest/flüssig-Grenzflächen für wässrige Lösungen des nichtionischen Tensids Hexaethylenglykol-Monododecylether (C12 E6) untersucht. Für Schaumfilme wurde die Bildung von common black films (CBF) und Newton black films (NBF) abhängig von der Tensidkonzentration und dem angelegten Druck beobachtet. Dabei wird mit steigender Tensidkonzentration und steigendem Druck der CBF destabilisiert und der NBF stabilisiert. Zum Vergleich wurden MASIF-Messungen mit zwei unterschiedlichen hydrophoben Oberflächen durchgeführt. Zum einen wurden silanierte Glasoberflächen, zum anderen thiolierte Goldoberflächen verwendet. Unterschiede sowie Ähnlichkeiten der Wechselwirkungen zwischen diesen beiden Grenzflächen werden aufgezeigt und diskutiert. Weiterhin werden die mit der MASIF-Technik erhaltenen Ergebnisse mit denen der thin film pressure balance verglichen und der Einfluss der Tensidkonzentration auf die Wechselwirkungen diskutiert.

Correspondence to Dr. Cosima Stubenrauch, Institut für Physikalische Chemie, Universität zu Köln Luxemburger Str. 116, 50939 Köln Germany E-mail:

Dr. Cosima Stubenrauch studied chemistry at the universities of Münster and Freiburg and received her PhD in Physical Chemistry at the TU Berlin in 1997. After a postdoctoral year at the Université Paris Sud, she has been working as an associate researcher and lecturer at the Institute of Physical Chemistry at the University of Cologne since 1999.

Dr. Judith Schlarmann studied chemistry at the University of Cologne where she received her PhD in Physical Chemistry in 2004. She is working for the Richard Kühn GmbH & Co. KG in Großburgwedel since August 2004.

Dr. Orlando Rojas studied chemistry at the Universidad de Los Andes in Venezuela and received his PhD at the Auburn University in 1998. After a postdoctoral stay in Prof. Claesons's group, he has been working as an assistant professor at the Department of Wood and Paper Science at the North Carolina State University since 2003.

Prof. Per Claesson studied Chemical Engineering at the Royal Institute of Technology in Stockholm where he received his PhD in Physical Chemistry in 1986. Since 1998 he is Professor in Surface Chemistry at the Royal Institute of Technology. Prof. Per Claesson is Head of the Surface Science Group at KTH and Director of the VINNOVA competence center “Surfactants based on natural products”.


1 Israelachvili, J.: in: Intermolecular and surface forces, 2 ed., Academic Press, San Diego, 1991.Search in Google Scholar

2 Israelachvili, J. N. and Wennerström, H.: J. Phys. Chem.96 (1992) 520.10.1021/j100181a007Search in Google Scholar

3 Israelachvili, J. N. and Pashley, R. M.: Nature300 (1982) 341.10.1038/300341a0Search in Google Scholar

4 Christenson, H. K, and Claesson, P. M.: Adv. Colloid Interface Sci.91 (2001) 391.10.1016/S0001-8686(00)00036-1Search in Google Scholar

5 Israelachvili, J. N. and Adams, G. E.: J. Chem. Soc. Faraday Trans.1 (1978) 74, 975.Search in Google Scholar

6 Parker, J. L.: Progr. Surf. Sci.47 (1994) 205.10.1016/0079-6816(94)90019-1Search in Google Scholar

7 Claesson, P. M., Ederth, T., Bergeron, V. and Rutland, M. W.: Adv. Colloid Interface Sci.67 (1996) 119.10.1016/0001-8686(96)00302-8Search in Google Scholar

8 Mysels, K. J. and Jones, M. N.: Discuss. Faraday Soc.42 (1966) 42.10.1039/df9664200042Search in Google Scholar

9 Exerowa, D. and Scheludko, A.: C. R. Acad. Bulg. Sci.24 (1971) 47.Search in Google Scholar

10 Exerowa, D. and Kruglyakov, P.M.: in: Foam and Foam films – Theory, Experiment, Application. Möbius, D., Miller, R. (eds.), Amsterdam, Elsevier1998.Search in Google Scholar

11 Stubenrauch, C. and Klitzing, R.: J. Phys.: Condens. Matter15 (2003) R1197.10.1088/0953-8984/15/27/201Search in Google Scholar

12 Stubenrauch, C., Rojas, O. J., Schlarmann, J. and Claesson, P. M.: Langmuir20 (2004) 4977.10.1021/la0304060Search in Google Scholar

13 Parker, J. L., Christenson, H. K. and Ninham, B. W.: Rev. Sci. Instrum.60 (1989) 3135.10.1063/1.1140544Search in Google Scholar

14 Iler, R. K.: in: The Chemistry of Silica, New York, John Wiley1979.Search in Google Scholar

15 Claesson, P. M. and Kjellin, U. R. M.: in: Modern characterization methods of surfactant system, ed. Binks, B. P., Marcel Dekker, New York, 1999, p. 255.Search in Google Scholar

16 Schillén, K., Claesson, P. M., Malmsten, M., Linse, P. and Booth, C: J. Phys. Chem.101 (1997) 4238.Search in Google Scholar

17 Kjellin, M., Claesson, P. M. and Vulfson, E. N.: Langmuir17 (2001) 1941.10.1021/la001309zSearch in Google Scholar

18 Kjellin, U. R. M. and Claesson, P. M.: Langmuir18 (2002) 6754.10.1021/la0255525Search in Google Scholar

19 Persson, C. M., Claesson, P. M. and Lunkenheimer, K.: J. Colloid Interface Sci.251 (2002) 182.10.1006/jcis.2002.8386Search in Google Scholar

20 Rojas, O. J., Macakova, L., Blomberg, E., Emmer, A. and Claesson, P. M.: Langmuir18 (2002) 8085.10.1021/la025989cSearch in Google Scholar

21 Chan, D. Y. C. and Horn, R. G. J.: Chem. Phys.83 (1985) 5311.Search in Google Scholar

22 Vinogradova, O. I.: Langmuir12 (1996) 5963.10.1021/la960531uSearch in Google Scholar

23 Derjaguin, B. V. and Landau, L. D.: Acta Physicochim. USSR14 (1941) 633.Search in Google Scholar

24 Verwey, E. J. W. and Overbeek, J. T. G.: in: Theory of the Stability of Lyophobic Colloids. Amsterdam, Elsevier1948.Search in Google Scholar

25 Bergeron, V. and Claesson, P. M.: Adv. Colloid Interface Sci.96 (2002) 1.10.1016/S0001-8686(01)00072-0Search in Google Scholar

26 Bergeron, V.: J. Phys.: Condens. Matter11 (1999) R215.10.1088/0953-8984/11/19/201Search in Google Scholar

27 de Gennes, P. G.: Adv. Colloid Interface Sci.27 (1987) 189.10.1016/0001-8686(87)85003-0Search in Google Scholar

28 Chan, D. Y., Pashley, R. M. and White, L. R.: J. Colloid Interface Sci.77 (1980) 283.10.1016/0021-9797(80)90445-2Search in Google Scholar

29 Ninham, B. W. and Parsegian, V. A.: J. Chem. Phys.52 (1970) 4578.10.1063/1.1673689Search in Google Scholar

30 Fröberg, J. C., Rojas, O. J. and Claesson, P. M.: International Journal of Mineral Processing56 (1999) 1.10.1016/S0301-7516(98)00040-4Search in Google Scholar

31 Exerowa, D.: Kolloid. Z.232 (1969) 703.10.1007/BF01500168Search in Google Scholar

32 Marinova, K. G., Alargova, R. G., Denkov, N. D., Velev, O. D., Petsev, D. N., Ivanov, I. B. and Borwankar, R. P.: Langmuir12 (1996) 2045.10.1021/la950928iSearch in Google Scholar

33 Karraker, K. A. and Radke, C. J.: Adv. Colloid Interface Sci.96 (2002) 231.10.1016/S0001-8686(01)00083-5Search in Google Scholar

34 Garrett, B. C.: Science303 (2004) 1146.10.1126/science.1089801Search in Google Scholar

35 Waltermo, Å., Manev, E., Pugh, R. and Claesson, P.: J. Dispersion Sci. Technol.15 (1994) 273.10.1080/01932699408943558Search in Google Scholar

36 Lu, J. R., Li, Z. X., Thomas, R. K., Staples, E.J., Tucker, I. and Penfold, J.: J. Phys. Chem.97 (1993) 8012.10.1021/j100132a034Search in Google Scholar

37 Goates, S. R., Schofield, D. A. and Bain, C. D.: Langmuir15 (1999) 1400.10.1021/la9809675Search in Google Scholar

38 Stubenrauch, C., Schlarmann, J. and Strey, R.: Phys. Chem. Chem. Phys.4 (2002), 4504 and Phys. Chem. Chem. Phys. 5 (2003) 2736.10.1039/b205728jSearch in Google Scholar

Received: 2004-4-5
Published Online: 2013-05-05
Published in Print: 2004-09-01

© 2004, Carl Hanser Publisher, Munich