Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 8, 2013

Krafft Points and Cloud Points of Polyoxyethylated Nonionic Surfactants

Part 1 Krafft Points in Binary Surfactant-Water Systems

Krafft- und Trübungspunkte von polyoxyethylierten nichtionischen Tensiden
  • H. Schott


The solubility of polyoxyethylated nonionic surfactants (POSs) in water is limited by an upper and a lower critical temperature. The former, called cloud point (CP), is the temperature at which POSs precipitate from solution on heating because of excessive dehydration of their polyoxyethylene (POE) moieties. The latter, called Krafft point (KP), is the temperature at which POSs crystallize from solution on cooling because of increased alignment and attraction between their hydrocarbon chains. It occurs less frequently: Even if the POSs were capable of crystallizing, ice often crystallizes first.

Aqueous solutions of over 100 POSs were examined by obtaining their CPs and ascertaining whether they exhibit KPs. KPs were found in polyoxyethylated primary alcohols and fatty acid amides and in polyethylene glycol esters of fatty acids. Only surfactants with strictly linear hydrocarbon chains crystallize, exhibiting KPs. Any branching, including that in polyoxyethylated linear secondary alcohols, prevents crystallization. Crystallization only occurs when the number mof carbon atoms in the hydrocarbon chains equals or exceeds 12. The KPs are then proportional to m. In homologous series, the surfactants most prone to crystallizing are those with borderline solubility, which possess just enough oxyethylene groups to promote solubility in cold water. Large POE moieties depress or eliminate KPs.


Die Löslichkeit von polyoxyethylierten nichtionischen Tensiden (POSs) in Wasser ist durch eine obere und untere kritische Temperatur begrenzt. Die erstere, der sogenannte Trübungspunkt (CP), ist die Temperatur, bei der beim Erhitzen POSs aus der Lösung ausfallen, aufgrund überhöhter Dehydratisierung ihrer Polyoxyethylen (POE) Reste. Die letztere, der sogenannte Krafftpunkt (KP), ist die Temperatur, bei der beim Abkühlen POSs aus der Lösung auskristallisieren, aufgrund zunehmender Anordnung und Anziehungskräfte zwischen den Kohlenwasserstoffketten. Es tritt weniger häufig auf: Selbst wenn die POSs zur Kristallisation fähig sind, kristallisiert Eis oft zuerst.

Wässrige Lösungen von über 100 POSs wurden untersucht, indem ihre CPs bestimmt und ermittelt wurde, ob sie KPs aufweisen. KPs wurden bei polyoxyethylierten primären Alkoholen, Fettsäureamiden und Polyethylenglykolestern von Fettsäuren gefunden. Nur Tenside mit streng linearen Kohlenwasserstoffketten weisen KPs auf. Jede Verzweigung, einschließlich die in polyoxyethylierten linearen sekundären Alkoholen, verhindert die Kristallisation. Eine Kristallisation tritt nur dann auf, wenn die Anzahl m der Kohlenstoffatome in den Kohlenwasserstoffketten gleich oder größer als 12 ist. Die KPs sind dann proportional zu m. In homologen Reihen sind Tenside mit der größten Neigung zur Kristallisation diejenigen mit Grenzlöslichkeit, die gerade genug Oxyethylengruppen aufweisen um die Löslichkeit in kaltem Wasser zu begünstigen. Große POE-Reste erniedrigen oder unterbinden KPs.

1Hans Schott, 801 W. Beaver Hill Apts. 100 West Ave. Jenkintown, PA 19046 U.S.A. Telephone: (2 15)8 87-01 16

Prof. Dr. Hans Schott obtained an MS in colloid chemistry from the University of Southern California and a Ph.D. in physical chemistry from the University of Delaware. After performing and directing research at the Du Pont, Olin, and Lever Brothers companies, he joined the School of Pharmacy of Temple University. He is presently Professor Emeritus of Pharmaceutics and Colloid Chemistry. His research deals with the application of colloid and polymer chemistry to pharmaceutical, cosmetic and industrial systems, especially nonionic surfactants, gelatin, cholesterol deposits, and suspensions of hydrous oxides, clays, drugs and bacteria.


1. Krafft, F. and Wiglow, H.: Chem. Ber.28 (1895) 2566.Search in Google Scholar

2. Shinoda, K., Nakagawa, T., Tamamushi, B.-I. and Isemura, T.: Colloidal Surfactants, Academic Press, New York1963.Search in Google Scholar

3. Rosen, M. J.: Surfactants and Interfacial Phenomena, 3rd edition, Wiley-Inter-science, New York2004.10.1002/9781118228920Search in Google Scholar

4. Myers, D.: Surfactant Science & Technology, 2nd edition, VCH Publishers, New York1988, 8384.10.1002/047174607XSearch in Google Scholar

5. Attwood, D.: J. Phys. Chem.72 (1968) 339.Search in Google Scholar

6. Schott, H. and Han, S. K.: J. Pharm. Sci.65 (1976) 979.Search in Google Scholar

7. Schick, M. J., editor: Nonionic Surfactants, Marcel Dekker, New York1967.Search in Google Scholar

8. Murray, R. C. and Hartley, G. S.: Trans. Faraday Soc.31 (1935) 183.Search in Google Scholar

9. Moroi, Y. and Matuura, R.: Bull. Chem. Soc. Jpn.61 (1988) 333.Search in Google Scholar

10. Moroi, Y., Sugii, R. and Matuura, R.: J. Colloid Interface Sci.98 (1984) 184.Search in Google Scholar

11. Shinoda, K. and Hutchinson, E.: J. Phys. Chem.66 (1962) 577.Search in Google Scholar

12. Shinoda, K. and Soda, T.: J. Phys. Chem.67 (1963) 2072.Search in Google Scholar

13. Schott, H.: J. Colloid Interface Sci.189 (1997) 117.Search in Google Scholar

14. Imae, T., Sasaki, M., Abe, A. and Ikeda, S.: Langmuir4 (1988) 414.10.1021/la970390bSearch in Google Scholar

15. Schott, H.: J. Pharm. Sci.58 (1969) 1433.Search in Google Scholar

16. van Os, N. M., Haak, J. R. and Rupert, L. A. M.: Physico-Chemical Properties of Selected Anionic Cationic and Nonionic Surfactants, Elsevier, Amsterdam1993.Search in Google Scholar

17. Mitchell, D. J., Tiddy, G. J. T., Waring, L., Bostock, T. and McDonald, M. P.: J. Chem. Soc., Faraday Trans. I, 79 (1983) 975.10.1039/f19837900975Search in Google Scholar

18. Nishikido, N.: J. Colloid Interface Sci.136 (1990) 401.Search in Google Scholar

19. Strey, R., Schomaeker, R., Roux, D., Nallet, F. and Olsson, U.: J. Chem. Soc., Faraday Trans.86 (1990) 2253.Search in Google Scholar

20. Schott, H.: Colloids Surfaces186 (2001) 129.Search in Google Scholar

21. Zulauf, M., Weckstroem, K., Hayter, J. B., Degiorgio, V. and Corti, M.: J. Phys. Chem.89 (1985) 3411.Search in Google Scholar

22. Balzer, D.: Langmuir9 (1993) 3375.Search in Google Scholar

23. Cummins, P. G., Staples, E., Penfold, J. and Heenan, R. K.: Langmuir5 (1989) 1195.Search in Google Scholar

24. Schott, H. and Han, S. K.: J. Pharm. Sci.64 (1975) 658.Search in Google Scholar

25. Schick, M. J., editor: Nonionic Surfactants: Physical Chemistry, Marcel Dekker, New York1987.Search in Google Scholar

26. Schott, H.: J. Colloid Interface Sci.24 (1967) 193.Search in Google Scholar

27. Schott, H.: J. Pharm. Sci.84 (1995) 1215.Search in Google Scholar

28. Schwartz, A. M.Perry, J. W., and Berch, J.: Surface Active Agents and Detergents, Interscience Publishers, New York1958, Vol. II, Chap. 2.Search in Google Scholar

29. Hinds, G. E. in Anionic Surfactants (Linfield, W. M., editor), Marcel Dekker, New York1976, Part I, Chap. 2.Search in Google Scholar

30. Schott, H.: J. Colloid Interface Sci.192 (1997) 458.Search in Google Scholar

31. Schott, H.: J. Pharm. Sci.69 (1980) 369.Search in Google Scholar

32. The U. S. Pharmacopeia 27th revision/The National Formulary 22nd edition, U. S. Pharmacopeial Convention, Rockville, MD 2004.Search in Google Scholar

33. Schott, H.: J. Colloid Interface Sci.260 (2003) 219.Search in Google Scholar

34. Mathis, G., Leempoel, P., Ravey, J.-C., Selve, C. and Delpuech, J.-J.: J. Am. Chem. Soc.106 (1984) 6162.Search in Google Scholar

Received: 2005-8-16
Published Online: 2013-05-08
Published in Print: 2005-12-01

© 2005, Carl Hanser Publisher, Munich

Downloaded on 9.12.2023 from
Scroll to top button