Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 8, 2013

Surfactant Enhanced Washing of Drilling Fluids, a Promising Remediation Technique

Erweiterte Tensidwäsche von Bohrflüssigkeiten, eine aussichtsvolle Fördertechnik
  • L. G. Torres , X. Lemus , G. Urquiza , A. Verdejo and R. Iturbe

Abstract

In this work, drilling fluids with 135 400 mg kg−1 of total petroleum hydrocarbons (TPH) were washed with six different surfactants (the non-ionic Emulgin 600, Emulgin 1000, Brij 35 and Tween 80, ionic SDS, and zwitterionic Polafix CAPB) and their mixtures. Due to the high Ca content in the samples, three different approaches were employed when washing with SDS, because of its ionic character: a) using mixtures of surfactants, b) addition of NaCl, and c) addition of a Ca sequestrant, i. e., sodium metasilicate. Drilling fluids were washed; TPH, electric conductivity (EC, as an indirect measurement of salinity), and pH values were measured before and after the washing process. Surface tension of the clean and spent washing solutions (surfactant or surfactants mixture, with or without salts) was measured.

TPH removals as high as 75% were achieved using SDS + sodium metasilicate. EC values diminished 75% with the washing process, but for the experiments in which salts were added, increments in electric conductivity of up to 367% were observed. Regarding the pH changes, initial sample pH value was 7.77, and in most cases this value was reduced, except for some of the cases where salt was added. Surfactant solution's surface tension changes (before and after the washing process) correlated fairly with TPH removals.

Kurzfassung

In dieser Arbeit wurden Bohrflüssigkeiten mit 135400 mg kg−1 Mineralölkohlenwasserstoffe (TPH) mit sechs verschiedenen Tensiden (nichtionisches Emulgin 600, Emulgin 1000, Brij 35 und Tween 80, ionisches SDS und zwitterionisches Polafix CAPB) und deren Mischungen gewaschen. Aufgrund des hohen Ca-Gehaltes der Proben kamen wegen des ionischen Charakters beim Waschen mit SDS drei verschiedene Methoden zum Einsatz: a) Verwendung von Tensidmischungen, b) Zusatz von NaCl und c) Zusatz von Ca-Binder, d. h. Natriummetasilikat. Die Bohrflüssigkeiten wurden gewaschen und die TPH, elektrische Leitfähigkeit (EC, als indirekte Messung des Salzgehaltes) sowie pH-Werte vor und nach dem Waschprozess gemessen. Die Oberflächenspannungen der gereinigten und verbrauchten Lösungen (Tensid oder Tensidmischungen, mit oder ohne Salz) wurden gemessen.

Die Entfernung von TPH war unter Verwendung von SDS und Natriummetasilikat mit 75% am höchsten. Die EC-Werte verminderten sich mit dem Waschprozess um 75%, aber bei den Versuchen in denen Salz zugesetzt wurde, waren Zunahmen der elektrische Leitfähigkeit bis zu 367% zu beobachten. Bei Betrachtung der pH-Änderungen zeigt sich, dass in den meisten Fällen der pH-Wert von 7,7 der Ausgangsproben reduziert wurde, mit Ausnahme der Fälle, in denen Salz zugesetzt wurde. Die Änderungen der Oberflächenspannungen der Tensidlösungen korrelierten völlig mit der THP-Entfernung.


* Apartado Postal 70–472. Coyoacan 04510. Mexico, DF: Mexico. e-mail
3L. G. Torres, Instituto de Ingenieria, Coordinación de Ingenieria Ambiental, Grupo Tratamiento de Suelos y Acuíferos, Universidad Nacional Autónoma de México, Apartado Postal 70–472, Coyoacan 04510. Mexico, DF: Mexico, E-mail:

Luis G. Torres (PhD). He has experience in industrial wastewaters' biological treatment, and characterization/remediation of metal and/or petroleum-contaminated soils. Currently, he has focused his interest on surfactant's application to environmental problems. His main research lines are a) surfactant-enhanced biodegradation of aged petroleum fractions in soils, b) in situ and ex situ soil washing, and c) preparation of petroleum fractions-surfactant-water emulsions, as a first step for fuel's biotreatments (e. g. biodesulfuration) d) rheology and mixing of sludges and suspensions applied to environmental problems.

X. Lemus (Bachellor). She is finishing her Bachellor's in Environmental Engineering at UPIBI/National Politecnic Institut. Part of this work is belong to her final thesis work.

G. Urquiza (M in SC). She has a Bachelor's in Chemistry by Universidad Autonoma del Estado de Morelos. After that, she studied a Master Degree in Environmental engineering by Facultad de Ingenieria/UNAM. At the time, she works as academic technician at Environmental Engineering department of II/UNAM. She is responsible of Instrumental Area of Bioprocess Laboratory and Environmental Engineering. She has great experience in metal analysis using ICP and Atomic absorption.

A. Verdejo (M in Sc). Chemical Engineering by Facultad de Quimica/UNAM. She has a Master degree in Sciences (Biochemistry) by UNAM too. She has been teacher at Chemistry Faculty since 20 years teaching Surface Phenomena, Interface Equilibrium and Physical Kinetics. She has great experience in characterization and use of commercial surfactants with industrial applications.

Rosario Iturbe (PhD). She has a PhD on Hydraulic Engineering by UNAM. She has great experience on contaminants migration, groundwaters contamination and remediation, petroleum-contaminated soils characterization and treatment by means of physicho-chemical and biological processes (i. e. in situ and ex situ soil washing, biopiles, air soil vapor extraction, surfactant-enhanced biodegradation of aged petroleum fractions). Currently, she is a researcher and group leader of the Soil and aquifers remediation group at the Environmental Engineering Department of the Engineering Institute/UNAM.


References

1. Stellner, K. L. and Scameron, J. F.: Langmuir.5 (1989) 70.Search in Google Scholar

2. Stellner, K. L. and ScameronJ. F.: Langmuir.5 (1989) 77.Search in Google Scholar

3. Amante, J. C., Scameron, J. F. and Harwell, J. H.: Journal of Colloids and Interface Science.144(1) (1991) 243.10.1016/0021-9797(91)90255-7Search in Google Scholar

4. De Lucas, A., Rodríguez, L., Sánchez, P. and Lobato, J.: Industrial Chemical Engineering Research.42 (2003) 3257.Search in Google Scholar

5. Shiau, B.-J., Harwell, J. and Scameron, J.: Journal of Colloid and Interface Science.167 (1991) 332.Search in Google Scholar

6. Torres, L. G., Aguirre, A. L., Verdejo, A. and Iturbe, R.: Proceedings of the GEOINVIRONMENT event. Segovia, España. 5–7 July2004.Search in Google Scholar

7. Lopez, J., Iturbe, R. and Torres, L. G.: Journal of Environmental Science and Health. Part A: Toxic/Hazardous Substances & Environmental engineering.A39(9) (2004) 2239.10.1081/ESE-200026266Search in Google Scholar PubMed

8. Rodriguez, Ch., Lowery, L. H., Scamerhon, J. F. and Harwell, J. H.: Journal of Surfactants and Detergents.4(1) (2001) 1.10.1007/s11743-001-0155-7Search in Google Scholar

9. Childs, J. D., Acosta, E., Scamerhorn, J. F. and Sabatini, D. A.: Journal of Energy Resources Technology. (2005). In press.Search in Google Scholar

10. Fernandez, L. C., Zegarra, H., Baca, G. and Torres, L. G.: Water Research. (2005). Submitted.Search in Google Scholar

11. Arce-Ortega, J. M., Rojas-Avelizapa, N. and Rodríguez-Vázquez, R.: Journal of Environmental Science and Health. Part A: Toxic/Hazardous Substances & Environmental Engineering.A39(6) (2004) 1535.10.1081/ESE-120037852Search in Google Scholar PubMed

12. PROFEPA Internal criteria for contaminated soils. Procuraduria Federal del Ambiente. (2000) Mexico.Search in Google Scholar

13. Kostecki, P. T., Calabrase, E. and Nascarella, M.: Soil and Sediment Contamination11 (2002) (2): 117.10.1080/20025891106727Search in Google Scholar

14. Iturbe, R., Flores, C., Chavez, C., Bautista, G. and Torres, L. G.: Journal of Soils and Sediments.14(2) (2004) 141.Search in Google Scholar

15. Torres, L. G., Orantes, J. L. and Iturbe, R.: Environmental Geosciences10(1) (2003) 28.10.1306/eg100102008Search in Google Scholar

Received: 2005-5-3
Published Online: 2013-05-08
Published in Print: 2005-12-01

© 2005, Carl Hanser Publisher, Munich

Downloaded on 7.12.2023 from https://www.degruyter.com/document/doi/10.3139/113.100278/pdf
Scroll to top button