Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 8, 2013

Performance of some Surfactants as Wetting Agents

Die Leistungsfähigkeit einiger Tenside als Netzmittel
  • M. N. Shalaby and O. A. A. El-Shamy

Abstract

The wetting power of anionic surfactant: sodium dodecyl sulfate (SDS), and nonionic surfactants: polyoxyethelene(14)monolaurate [La(EO)14] and polyoxyethelene(14)monooleate [Ol(EO)14] has been studied to determine their performance as wetting agents. The study reveals that the nonionic compound with a long hydrophobic chain exhibits higher wettability than the shorter one when used at very low concentrations (below CMC), and the reverse is shown with high concentrations (above CMC). The wetting power of the investigated surfactants increases as the CMC values increases. In case of the nonionic compounds and at surfactant concentrations equal their CMC values, Ol(EO)14 shows a higher wetting power than La(EO)14 while it possesses a lower HLB value. The anionic surfactant shows an optimum wetting in comparison with the tested nonionic ones. The wettability of all the investigated samples increases as the surface tension of their solutions increases to the allowed limit that can be reached in the presence of surfactant.

Kurzfassung

Die Benetzungskraft von anionischen Tensiden — Natriumdodecylsulfat (SDS) — und nichtionischen Tensiden — Polyoxyethylen(14)mono-laurat [La(EO)14] und Polyoxyethylen(14)monooleat [Ol(EO)14] — wurde zur Bestimmung ihrer Leistungsfähigkeit als Netzmittel untersucht. Die Untersuchung belegt, dass bei sehr niedrigen Konzentrationen (unterhalb CMC) nichtionische Verbindungen mit einer langen hydrophoben Kette eine höhere Benetzbarkeit zeigen, als diejenigen mit einer kürzeren und bei hohen Konzentrationen (oberhalb CMC) den umgekehrten Fall aufweisen. Die Benetzungskraft der untersuchten Tensiden erhöht sich proportional mit den CMC-Werten. Im Fall der nichtionischen Verbindungen und bei Tensidkonzentrationen gleich den CMC-Werten zeigt Ol(EO)14 eine höhere Benetzungskraft als La(EO)14, da es einen niedrigeren HLB-Wert besitzt. Das anionische Tensid zeigt im Vergleich zu den getesteten nichtionischen die beste Benetzung. Die Benetzbarkeit aller untersuchten Proben erhöht sich proportional mit der Oberflächenspannung ihrer Lösungen, bis zur erlaubten Grenze der gegenwärtigen Tenside, die erreicht werden kann.


1Dr. Magda N. Shalaby, Egyptian Petroleum Research Institute (EPRI) Evaluation and Analysis Dep. Nasr City 11727, Cairo, Egypt E-mail:

Magda Naguib Shalaby was born in 1954. B. Sc., Chemistry, Faculty of Girls, Ain Shams University, 1978. M. Sc., Chemistry, Faculty of Science, Ain Shams University, 1990. Ph.D., Chemistry, Faculty of Science, Ain shams University, 1996. Subject of Study: “Physicochemical Properties and Evaluation of Some Surface Active Agents”. Chemist since 1980 till 1990 at Egyptian Petroleum Research Institute (EPRI), Analysis and evaluation Department. Assistance Researcher since 1990 till 1996 at Egyptian Petroleum Research Institute (EPRI), Analysis and evaluation Department. Researcher since 1996 till 2002 at Egyptian Petroleum Research Institute (EPRI), Analysis and evaluation Department. Assistance professor since 2002 till now at Egyptian Petroleum Research Institute (EPRI), Analysis and evaluation Department. Head of Spectroscopic Measurements Lab. at Egyptian Petroleum Research Institute (EPRI), Analysis and evaluation Department.

Omnia Abd Elkader Ali was born in 1975. B. Sc., Chemistry, Faculty of Science, Cairo University, May 1999. M. Sc., Chemistry, Faculty of Science, Cairo University, 2003. Subject of Study: “Studies on the Effect of Some Surfactants on Petroleum Oil-Spilled in Marine Water”. Present study: Ph.D. Register at Ain Shams University. Assistant researcher since 2003 at Egyptian Petroleum Research Institute (EPRI).


References

1. Shalaby, M. N.: PhD Thesis, Ain Shams University, Cairo, Egypt, 1996.Search in Google Scholar

2. Rosen, M. J.: “Surfactant and Interfacial Phenomena”, John Wiley and Sons, New York, 1978.10.1002/9781118228920Search in Google Scholar

3. Schramm, L. L.: “Surfactants: Fundamentals and Applications in the Petroleum Industry”, Cambridge University Press, U.K., 2000.10.1017/CBO9780511524844Search in Google Scholar

4. Bi, Z., Liao, W. and Qui, L.: Applied Surface Science25 (2004) 221.Search in Google Scholar

5. Wrigley, A. N., Smith, F. D. and Stirton, A. J.: J. Am. Oil Chem. Soc.34 (1957) 39.Search in Google Scholar

6. Wilhelmy, L.: Ann. Phys.119 (1963) 177.Search in Google Scholar

7. Draves, C. Z. and Clarkson, R. G.: Amer. Dystuff Rept.20 (1931) 201.Search in Google Scholar

8. Davies, J. T.: Proc. Int. Conr. Surface Activity, 2nd, London1 (1957) 426.Search in Google Scholar

9. Komor, J. A. and Beiswanger, J. P. G.: J. Am. Oil Chem. Soc.43 (1966) 435.Search in Google Scholar

10. Fowkes, F. M.: J. Phys. Chem.57 (1953) 98.Search in Google Scholar

11. Tadros, Th. F.: “Wetting, Spreading, and Adhesion”, Padday, J.F., Academic Press Inc. (London) LTD, 1978.Search in Google Scholar

12. Dao, K., Bee, A. and Treiner, C.: J. Colloid Interface Sci.204 (1998) 61.Search in Google Scholar

Received: 2005-2-22
Published Online: 2013-05-08
Published in Print: 2005-12-01

© 2005, Carl Hanser Publisher, Munich

Downloaded on 28.11.2023 from https://www.degruyter.com/document/doi/10.3139/113.100280/pdf
Scroll to top button