Abstract
A series of new gemini surfactants having hydrophilic glucosides were synthesized from glucose via two different synthesis roads, including N,N′-didodecyl-N,N′-bis-(1-glucosyl-2-hydroxyl-propyl)-p-phthaloyl amide [B(DG)PA], N,N′-didodecyl-N,N′-bis(1-glucosyl-2-hydroxyl-propyl)-2,5-dicarboxylate p-phthaloyl amide [B(DGC)PA], N,N′-didodecanoyl-N,N′-bis-(1-glucosyl-2-hydroxyl-propyl) ethylenediamine [B(DG)EA], and N,N′-didodecanoyl-N,N′-bis-(1-glucosyl-2-hydroxyl-propyl) hexanediamine [B(DG)HA]. The final products were characterized by IR and NMR spectral measurements and by interfacial tension measurements. The critical micellar concentrations (cmc) of these gemini surfactants were determined to be 2.49 × 10−6, 1.93 × 10−6, 2.47 × 10−6 and 1.66 × 10−6 mol L−1, respectively, which are about one order of magnitude lower than the corresponding monomeric surfactants (GHPDA). The results showed that these synthesized sugar-based gemini surfactants had high abilities to reduce the surface or oil-water interface tension. The high surface activity of these synthesized molecules was attributed to their unique structure where two optimally spaced hydrophobic chains and hydrophilic groups were present.
Kurzfassung
Eine Reihe von neuen Gemini-Tensiden mit hydrophilen Glycosiden wurde auf zwei verschiedenen Wegen aus Glukose synthetisiert, dazu gehören N,N′-Didodecyl-N,N′-bis(1-glucosyl-2-hydroxyl-propyl)-p-phthaloylamid [B(DG)PA], N,N′Didodecyl-N,N′-bis(1-glucosyl-2-hydroxyl-propyl)-2,5-dicarboxylat-p-phthaloylamid [B(DGC)PA], N,N′-Didodecanoyl-N,N′-bis(1-glucosyl-2-hydroxyl-propyl)ethylendiamin [B(DG)EA] und N,N′-Didodecanoyl-N,N′-bis-(1-glucosyl-2-hydroxyl-propyl)hexandiamin [B(DG)HA]. Die Endprodukte wurden durch IR- und NMR-Spektralmessungen sowie Messungen der Grenzflächenspannung charakterisiert. Die kritischen Mizellbildungskonzentrationen (cmc) dieser Gemini-Tenside wurden zu 2,49 × 10−6, 1,93 × 10−6, 2,47 × 10−6 und 1,66 × 10−6 mol L−1 bestimmt, die jeweils eine Größenordnung niedriger sind als die entsprechenden monomeren Tenside (GHPDA). Die Ergebnisse zeigen, dass diese zuckerbasierten Gemini-Tenside ein hohes Vermögen zur Reduzierung der Oberflächen- oder Öl-Wasser-Grenzflächenspannung besitzen. Die hohe Oberflächenaktivität dieser synthetisierten Moleküle ist auf die vorliegende einzigartige Struktur, mit zwei räumlich optimierten hydrophoben Ketten und hydrophilen Gruppen, zurückzuführen.
References
1.Shi, J., Li, Q.-D. and Xia, X.-C.: Chem. Res. Appl.17(2005)293.10.3354/meps293017Search in Google Scholar
2.Alami, E., Beinert, G. and Marie, P.: Langmuir9(1993)1465. 10.1021/la00030a006Search in Google Scholar
3.Maja Sikiric, K. and Holmberg, J. E.: J. Colloid Interface Sci.247 (2002) 447.Search in Google Scholar
4.Philippe, R., CharlesM. and Lue, L.: Tetrahedron Lett.39(1998)1357. 10.1016/S0040-4039(97)10835-8Search in Google Scholar
5.Kumar, A., Alami, E., Holmberg, K., Seredyuk, V. and Menger, F. M.: Colloids Surf. A: Physicochem. Eng. Aspects228(2003)197. 10.1016/S0927-7757(03)00300-5Search in Google Scholar
6.Seredyuk, V., Alami, E., Nydén, M., Holmberg, K., Peresypkin, A. V. and Menger, F. M.: Colloids Surf. A: Physicochem. Eng. Aspects203(2002)245. 10.1016/S0927-7757(01)01106-2Search in Google Scholar
7.Alami, E., Holmberg, K. and Este, J.: J. Colloid Interface Sci.247(2002)447. 10.1006/jcis.2001.8116Search in Google Scholar
8.Alami, E. and Holmberg, K.: J. Colloid Interface Sci.239(2001)230. 10.1006/jcis.2001.7502Search in Google Scholar
9.Philippe, R., DominiqueH., Jean-RogerD., Jean-Michel, M., Charles, M. and Luc, L.: Chem. Physics Lipids99(1999)21. 10.1016/S0009-3084(99)00003-1Search in Google Scholar
10.Grosmaire, L., Chorro, M., Chorro, C., Partyka, S. and Boyer, B.: Thermochimica Acta379(2001)261. 10.1016/S0040-6031(01)00624-4Search in Google Scholar
11.Benalla, H., Meziani, M. J. and Zajac, J.: Colloids Surf. A: Physicochem. Eng. Aspects238(2003)99. 10.1016/j.colsurfa.2004.02.023Search in Google Scholar
12.Meziani, M. J., Benalla, H., Zajac, J., Partyka, S. and Jones, D. J.: J. Colloid Interface Sci.262(2003)362. 10.1016/S0021-9797(03)00204-2Search in Google Scholar
13.Bai, G. Y., Wang, Y. J. and Yan, H. K.: J. Colloid Interface Sci.240(2001)375. 10.1006/jcis.2001.7642Search in Google Scholar
14.Magdassi, S., Ben-MosheM., Talmon, Y. and DaninoD.: Colloids Surf. A: Physicochem. Eng. Aspects212(2003)1. 10.1016/S0927-7757(02)00294-7Search in Google Scholar
15.James, T. D., Li, R. X. and Yang, J.: AU: 7246198 (1998).Search in Google Scholar
16.Mariano, J. L, Castro, J. K. and AliciaF.C.: Tetrahedron55(44)(1999)12711. 10.1016/S0040-4020(99)00786-3Search in Google Scholar
17.Schuur, B., Wagenaar, A., Heeres, A. and Heeres, E. H. J.: Carbohydrate Res.339(2004)1147. 10.1016/j.carres.2004.01.021Search in Google Scholar PubMed
18.Brun, A., Brezesinski, G., Möhwald, H., Blanzat, M., Perez, E. and Rico-Lattes, I.: Colloids Surf. A: Physicochem. Eng. Aspects228(2003)3. 10.1016/j.colsurfa.2003.08.008Search in Google Scholar
© 2006, Carl Hanser Publisher, Munich