Accessible Unlicensed Requires Authentication Published by De Gruyter April 2, 2013

Force Measuring Methods for Determination of Surface Tension of Liquids: A Comparison

Kraftmessungsmethoden zur Bestimmung der Oberflächenspannung von Flüssigkeiten: Ein Vergleich
L. Richter and D. Vollhardt


Three methods for the determination of the surface tension of liquids based on force measurements namely, the vertical plate method of Wilhelmy, the frame method of Lenard and the ring method of du Noüy are compared and studied in respect of a common principle of correction. It is shown that these three most important force-based methods allow the determination of the surface tension under static conditions. The force components of the corresponding liquid column below the measuring wire obtained for the straight part of the withdrawal curve up to the transition in its curved part provides exact surface tension values. The experimentally accessible value of the force component describes the physical background of the measured value correction contrary to the approximate equations obtained by mathematical way. Usually the determination of surface tension of liquids is based merely at the vertical plate method on exact equations thermodynamically derived whereas in the case of the frame and ring methods correction factors in approximate equations are used. At usual application of the force-based methods under the non-static condition of the withdrawal of a liquid column, the force maximum measured at withdrawal of the measuring object (plate, frame, or ring) is the basis for the determination of surface tension. In these cases, the measured surface tension values are compensated by correction equations for the frame and ring methods which are based on an correction factor and correction tables empirically obtained. The surface tension values obtained in this usual way agree with those obtained by using the force component of the corresponding liquid column below the measuring wire for the straight part of the withdrawal curve up to the transition in its curved part. Problems arising at the force measurements with increasing thickness of the measuring wires inside and outside the rings are discussed.


Drei auf Kraftmessungen basierende Methoden zur Bestimmung der Oberflächenspannung von Flüssigkeiten, nämlich die Vertikalplattenmethode von Wilhelmy, die Bügelmethode von Lenard und die Ringmethode von du Noüy werden miteinander verglichen und auf ein experimentell zugängliches gemeinsames Korrekturprinzip hin untersucht. Auf Basis der Messresultate wird demonstriert, dass diese drei wichtigsten auf Kraftmessungen basierenden Methoden eine exakte Bestimmung der Oberflächenspannung ermöglichen. Dies basiert auf Berücksichtigung der Kraftkomponente der entsprechenden Flüssigkeitssäule unterhalb des Messdrahtes, der für die Austauchgerade bis zum Übergang in den gekrümmten Teil der Austauchkurve erhalten wird. Der experimentell zugängliche Wert der Kraftkomponente beschreibt den physikalischen Hintergrund der Messwertkorrektur im Gegensatz zu den auf mathematischen Weg erhaltenen Näherungsgleichungen. Gebräuchlicher Weise basiert die Bestimmung der Oberflächenspannung von Flüssigkeiten lediglich bei der Vertikalplattenmethode auf thermodynamisch-exakt ableitbaren Gleichungen, während bei Bügel- und Ringmethode Korrekturfaktoren für Näherungsgleichungen bzw. Korrekturtabellen üblich sind. Die so erhaltenen Oberflächenspannungswerte stimmen mit denen überein, die unter Berücksichtigung der Kraftkomponente der entsprechenden Flüssigkeitssäule unterhalb des Messdrahtes erhalten werden. Probleme, die mit zunehmender Dicke des Messdrahtes innerhalb und außerhalb des Rings entstehen, werden diskutiert.

Prof. Dr. Dieter Vollhardt, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, D-14424 Potsdam, Germany.

Lothar Richter received the PhD at the Humboldt University, Berlin. After working many years in the photochemical industry he switched to the Central Institute of Organic Chemistry of the Academy of Science from 1971–1991. From 1992 up to his retirement in 1995he worked at the Max Planck Institute of Colloids and Interfaces.

Dieter Vollhardt, senior scientist at the Max Planck Institute of Colloids and Interfaces, has been Professor of Physical Chemistry at the Potsdam University since 1999. He received the PhD at the Humboldt University, Berlin; the habilitation at the Academy of Science, Berlin. Currently, his main topics in the field of physical chemistry of interfaces are molecular recognition systems, supramolecular organisation in monolayers and biomimetic systems, and spontaneous oscillations at interfaces.


1.Rusanov, A. I. and Prokhorov, V. H.: Interfacial Tensiometry; in Studies in Interface Science, eds. Möbius, D.; Miller, R.; Elsevier: Amsterdam, Lausanne, New York, Oxford, Shannon, Tokyo; 1996.Search in Google Scholar

2.Wilhelmy, L.: Ann. Phys.199 (1863) 177.Search in Google Scholar

3.Lenard, P., v. Dallwitz-Wegener, R. and Zachmann, E.: Ann. Phys., 4. Folge 74(1924)381. 10.1002/andp.19243791302Search in Google Scholar

4.Du Noüy, P. L.: J. Gen. Physiol.1(1919)521. 10.1085/jgp.1.5.521Search in Google Scholar

5.Huh, C. and Mason, S. G.: Colloid Polymer Sci.253(1975)566. 10.1007/BF01753960Search in Google Scholar

6.Richter, L. and Vollhardt, D.: Tenside Surf. Det.30(1993)192.Search in Google Scholar

7.Richter, L. and Volke, C. Z.: Wiss. Phot., Photophysik, Photochemie54(1960)57.Search in Google Scholar

8.Moser, H.: Ann. Phys.82(1927)993. 10.1002/andp.19273870706Search in Google Scholar

9.Harkins, W. D., Young, T. F. and Cheng, L. H.: Science64(1926)333. 10.1126/science.64.1657.333-aSearch in Google Scholar

10.Harkins, W. D. and Jordan, H. F.: J. Amer. Chem. Soc.52(1930)1751. 10.1021/ja01368a004Search in Google Scholar

11.Freud, B. B. and Freud, H. Z.: J. Am. Chem. Soc.52(1930)1772. 10.1021/ja01368a005Search in Google Scholar

12.Zuidema, H. H. and Waters, G. W.: Ind. Eng. Chem.13(1941)312.Search in Google Scholar

13.Lunkenheimer, K. and Wantke, K.-D.: Colloid & Polymer Sci.259(1981)354. 10.1007/BF01524716Search in Google Scholar

14.Hesse, K.: Angew. Chem.67(1955)737. 10.1002/ange.19550672302Search in Google Scholar

Received: 2006-04-07
Published Online: 2013-04-02
Published in Print: 2006-11-01

© 2006, Carl Hanser Publisher, Munich