Accessible Requires Authentication Published by De Gruyter April 2, 2013

Micellar Characterisation of Saponin from Sapindus Mukorossi

Mizellare Charakterisierung von Saponin aus Sapindus Mukorossi
S. Balakrishnan, S. Varughese and A. P. Deshpande

Abstract

The micellar characteristics of a non-ionic, natural surfactant, saponin obtained from the soapnut tree, Sapindus mukorossi, were studied in aqueous solution. Critical micelle concentration of Sapindus saponin determined using conductivity measurements and UV absorption studies was 0.045 wt%. Increase in temperature and salt concentration led to decrease in the critical micelle concentration of Sapindus saponin. The critical micelle concentration was found to increase with increase in hardness of water and increase in pH. The micellar aggregation number was determined using cyclic voltammetry and was found to be between 13 and 21. The size of the Sapindus saponin micelles was determined using intrinsic viscosity measurements and was found to be independent of saponin concentration for concentrations above the CMC. Solubilisation of two types of crude oils and a vegetable oil was studied using micellar solubilisation technique. At lower concentrations of the surfactant, the micellar solubilisation of crude oils in saponin was better than synthetic surfactants like Triton X100® and SDS where as, the solubilisation of vegetable oil was better in synthetic surfactants.

Kurzfassung

Die mizellare Charakterisierung des nichtionischen natürlichen Tensids, Saponin, gewonnen aus dem Waschnussbaum, Sapindus mukorossi, wurde in wässriger Lösung untersucht. Die kritische Mizellbildungskonzentration von Sapindus Saponin wurde mittels Leitfähigkeitsmessung und UV-Absorptionsuntersuchungen zu 0,045 wt% bestimmt. Erhöhungen von Temperatur und Salzkonzentration führen zu einer Verringerung der kritischen Mizellbildungskonzentration von Sapindus Saponin. Durch Zunahme des Anteils an hartem Wasser und durch pH-Erhöhung steigt die kritische Mizellbildungskonzentration an. Die mizellare Aggregationszahl wurde mittels zyklischer Voltammetrie bestimmt und betrug zwischen 13 und 21. Die Größe der Sapindus Saponin Mizellen wurde durch intrinsische Viskositätsmessungen bestimmt und ist für Konzentrationen oberhalb der cmc unabhängig von der Saponin-Konzentration. Die Solubilisierung von zwei Rohölsorten und eines Pflanzenöles wurden unter Verwendung der mizellaren Solubilisierungstechnik untersucht. Bei niedrigeren Tensidkonzentrationen war die mizellare Solubilisierung der Rohöle in Saponin besser als die von synthetischen Tensiden, wie Triton X100® und SDS, wohingegen die Solubilisierung von Pflanzenöl in synthetischen Tensiden besser war.


Dr. Susy Varughese, Assistant Professor, Department of Chemical Engineering, IIT-Madras, Chennai-600036, India, Phone: +91-44-22574172, Fax: +91-44-22574152. E-mail:

S. Balakrishnan graduated in chemical engineering in 2002 from Bharathiar University, Coimbatore, India. After that he worked as Trainee in (The Metal Powder Company Limited, Madurai) for one year. He is pursuing his MS in chemical engineering at IIT-Madras, since 2004. His area of interest is Rheology and Fluid Mechanics.

Dr. Susy Varughese is currently Assistant Professor at the Department of Chemical Engineering in the Indian Institute of Technology Madras. Background:

– Scientist, National Chemical Laboratory, Pune.

– Post-doctoral Fellow, Cambridge University Engineering Department, Cambridge, UK.

– Ph.D., Indian Institute of Technology, Kharagpur, India, 1992.

– B. Tech., Cochin University of Science and Technology, Cochin, India, 1987.

Her research interests are in the areas of physics and mechanics of polymeric materials, diffusion and free volume in polymers, eco-friendly products and processes, polymeric nanocomposites, recycling and environment.

Abhijit P. Deshpande studied Chemical Engineering at the Indian Institute of Bombay, Mumbai (BTech, 1989), University of Pitssburgh (MS, 1991) and University of Washington (PhD, 1996). He is currently Assistant Professor at the Department of Chemical Engineering in the Indian Institute of Technology Madras. His research interests are Polymers and composites, Rheology and Flow visualization. Some current projects are: drop spreading dynamics on porous media, micellar systems, development of natural fiber composites.


References

1.Holmberg, K.: Curr. Opin. Colloid Interf. Sci.6(2001)148. 10.1016/S1359-0294(01)00074-7 Search in Google Scholar

2.Ishigami, Y. and Suzuki, S.: Prog. Org. Coat.31(1997)51. 10.1016/S0300-9440(97)00018-0 Search in Google Scholar

3.Berhow, M. A., Wagner, E. D., Vaughn, S. F. and Plewa, M. J.: Mut. Res.448(2000)11. 10.1016/S0027-5107(99)00225-0 Search in Google Scholar

4.Mitra, S. and Dungan, S.: J. Agric. Food Chem.45(1997)1587. 10.1021/jf960349z Search in Google Scholar

5.Shaker, K. H., Bernhardt, M., Elgamal, M. H. A. and Seifert, K.: Phytochemistry51(1999)1049. 10.1016/S0031-9422(98)00750-X Search in Google Scholar

6.Kommalapatti, R. R., Valsaraj, K. T., Constant, W. D. and Roy, D.: J. Haz. Mat.60(1998)73. 10.1016/S0304-3894(97)00156-8 Search in Google Scholar

7.Urum, K. and Pekdemir, T.: Chemosphere57(2004)1139. 10.1016/j.chemosphere.2004.07.048 Search in Google Scholar

8.Graf, C. S. and Mesa, C. L.: Thermochim. Acta418(2004)79. 10.1016/j.tca.2003.11.044 Search in Google Scholar

9.Mitra, S. and Dungan, S. R.: Colloids Surf. B: Biointerf.17(2000)117. 10.1016/S0927-7765(99)00088-0 Search in Google Scholar

10.Martin, R. M. S., Otero, A. F., Figueroa, M., Escobar, V. and Cruz, A.: Hydrometallurgy77(2005)163. 10.1016/j.hydromet.2004.11.009 Search in Google Scholar

11.Hong, K. J., Tokunaga, S., Ishigami, Y. and Kajiuchi, T.: Chemosphere41(2000)345. 10.1016/S0045-6535(99)00489-0 Search in Google Scholar

12.Rao, A. S. V. S., Basa, S. C. and Srinivasulu, C.: Research and Industry37(1992)209. Search in Google Scholar

13.Moroi, Y.: Micelles – Theoretical and Applied Aspects, Plenum Press, New York, 1992. Search in Google Scholar

14.Row, L. R. and Rukmini, C.: Indian J. Chem.4(1966)36. Search in Google Scholar

15.Chatterjee, A. and Pakrashi, S. C.: The Treatise on Indian Medicinal Plants, National Institute of Science Communication, New Delhi, 1997. Search in Google Scholar

16.Nakanishi, K.: Infrared Absorption Spectroscopy – Practical, Nankodo Company, Tokyo, 1962. Search in Google Scholar

17.Nyberg, N. T., Baumann, H. and Kenne, L.: Anal. Chem.75(2003)268. 10.1021/ac025725v Search in Google Scholar

18.Paugam, M. F., Morin, G. T. and Smith, B. D.: Tetrahed. Lett.34(1993)7841. 10.1016/S0040-4039(00)61490-9 Search in Google Scholar

19.Dyer, J. R.: Applications of Absorption Spectroscopy of Organic Compounds, Prentice Hall India, New Delhi, 1978. Search in Google Scholar

20.Reis, S., Mountinho, C. G., Matos, C., Castro, B. D., Gameiro, P. and Lima, J. L. F. C.: Anal. Biochem.334(2004)117. 10.1016/j.ab.2004.07.017 Search in Google Scholar

21.Terashima, M., Fukushima, M. and Tanaka, S.: Colloids Surf. A: Physicochem. Engg. Aspects247(2004)77. 10.1016/j.colsurfa.2004.08.028 Search in Google Scholar

22.Gu, G., Yan, H., Chen, W. and Wang, W.: J. Colloid Interf. Sci.178(1996)614. 10.1006/jcis.1996.0158 Search in Google Scholar

23.Okano, L. T., Quina, F. H. and Seoud, O. A. E.: Langmuir16(2000)3119. 10.1021/la9911382 Search in Google Scholar

24.Huang, Y. X., Tan, R. C., Li, Y. L., Yang, Y. Q., Yu, L. and He, Q. C.: J. Colloid Interf. Sci.236(2001)28. 10.1006/jcis.2000.7278 Search in Google Scholar

25.Charlton, I. D. and Doherty, A. P.: Anal. Chem.72(2000)687. 10.1021/ac990354c Search in Google Scholar

26.Chokshi, K., Qutubuddin, S. and Hussam, A.: J. Colloid Interf. Sci.129(1989)315. 10.1016/0021-9797(89)90445-1 Search in Google Scholar

Received: 2006-02-20
Published Online: 2013-04-02
Published in Print: 2006-11-01

© 2006, Carl Hanser Publisher, Munich