Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 2, 2013

Importance of Micellar Lifetime and Sub-micellar Aggregates in Detergency Processes

Bedeutung der mizellaren Lebensdauer und der submizellaren Aggregate in Waschverfahren
M. A. James-Smith, D. Shekhawat and D. O. Shah

Abstract

Micelles are known to be dynamic entities, rapidly breaking and reforming continuously. Micellar dynamics can be manipulated by the addition of non-ionic or oppositely charged cosurfactant to a sodium dodecyl sulfate solution. Using filtration through nanoporous membranes we have shown that sodium dodecyl sulfate micellar solutions are not only made up of micelles and monomers, but also contain a high concentration of sub-micellar aggregates. The concentration of sub-micellar aggregates decreases as the micellar stability increases. We have investigated the role of micellar stability and sub-micellar aggregates in cleaning of fabrics and hard surfaces such as porcelain dishes. After careful observation, it was determined that more stable micelles and lower concentrations of sub-micellar aggregates lead to more efficient detergency. In summary, it is desirable to have relatively stable micelles and the least number of sub-micellar aggregates for efficient detergency.

Kurzfassung

Mizellen sind als dynamische Gebilde bekannt, die rasch aufbrechen und sich fortlaufend zurückbilden. Die mizellare Dynamik kann durch Addition von nichtionischen oder entgegengesetzt geladenen Co-Tensiden zu einer Natriumdodecylsulfat-Lösung beeinflusst werden. Mittels Filtration durch nanoporöse Membranen haben wir gezeigt, dass mizellare Lösungen von Natriumdodecylsulfat nicht nur aus Mizellen und Monomeren bestehen, sondern auch eine hohe Konzentration an submizellaren Aggregaten beinhalten. Die Konzentration von submizellaren Aggregaten nimmt mit steigender mizellarer Stabilität ab. Wir haben die Rolle der mizellaren Stabilität und der submizellaren Aggregate bei der Reinigung von Textilwaren und harten Oberflächen wie Porzellangeschirr untersucht. Nach sorgfältiger Beobachtung wurde ermittelt, dass mehr stabile Mizellen und niedrigere Konzentrationen an submizellaren Aggregaten zu einer effizienteren Waschkraft führen. Zusammengefasst ist es für eine effiziente Waschkraft wünschenswert relativ stabile Mizellen und die geringste Anzahl an submizellaren Aggregaten zu haben.


Dinesh O. Shah, Chemical Engineering Department PO Box 116005, University of Florida, FL-312611-6005 Gainesville, Tel.: +3523920877, Fax: +3523920127. E-mail:

Dinesh O. Shah received his Ph.D. in biophysics at Columbia University (1965). He is a Professor at the University of Florida, where he holds joint appointments in the Chemical Engineering Department and in the Anesthesiology Department. He is the Director of the Center for Surface Science & Engineering. In 1996 he was honored with the first Charles A. Stoke Professor award. His academic activities include research on monomolecular films, foams, wettability and contact angle, microemulsions, liquid crystals, spontaneous emulsification, enhanced oil recovery, combustion of coal dispersions in oils and aqueous media, surfactant-polymer interaction, lubrication and surface phenomena in magnetic media, preparation of nano-particles using microemulsions, enhanced filtration of viruses and nano-particles by surface modification of filter, enzymatic reactions in micellar, microemulsion and liquid crystalline systems, surface phenomena in membranes, lungs, vision, transdermal drug delivery, anesthesia, and nanoparticles for detoxification of blood and nano-medicine.

Monica A. James-Smith received her Ph.D. in chemical engineering at the University of Florida (2006). She obtained her B.S. degree in Chemical Engineering from Tuskegee University (2000). She is currently doing post-doctoral research with Dr. Shah and will begin a post-doctoral appointment at the University of California at Santa Barbara in June 2007. Her Ph.D. thesis addressed the problems of understanding the molecular interactions at the oil/aqueous interface of microemulsions in relation to detoxification of blood, determining the factors that affect surfactant partitioning to the oil/water interface of macroemulsions, and determining the important molecular species in micellar solutions; namely, monomers, micelles, and sub-micellar aggregates. Monica will be working in the area of transdermal drug delivery at UCSB.

Dushyant Shekhawat graduated with his B. Tech from Indian Institute of Technology (IIT) Bombay in 2002. He is currently completing his Ph.D. under the guidance of Professor Dinesh Shah at the Center for Surface Science and Engineering in the Chemical Engineering Department at the University of Florida.


References

1.Aniansson, E. A. G. and Wall, S. N.: On the kinetics of step-wise micelle association. J. Phys. Chem.78 (10) (1974)10241030. 10.1021/j100603a016Search in Google Scholar

2.Kahlweit, M. and Teubner, M.: On the kinetics of micellization in aqueous solutions. Adv. Colloid Interface Sci.13 (1–2) (1980)164. 10.1016/0001-8686(80)87001-1Search in Google Scholar

3.Aniansson, G. E. A.: The mean lifetime of a micelle. Prog. Colloid Polym. Sci.70(1985)25. 10.1007/BFb0114294Search in Google Scholar

4.Oh, S. G. and Shah, D. O.: The effect of micellar lifetime on the rate of solubilization and detergency in sodium dodecyl sulfate solutions. J. Am. Oil Chem. Soc.70 (7) (1993)673678. 10.1007/BF02641002Search in Google Scholar

5.Patist, A., et al.: Importance of micellar kinetics in relation to technological processes. J. Colloid Interface Sci.245 (1) (2002)115. 10.1006/jcis.2001.7955Search in Google Scholar

6.Leung, R. and Shah, D. O.: Dynamic properties of micellar solutions. 1. Effects of short-chain alcohols and polymers on micellar stability. J. Colloid Interface Sci.113 (2) (1986)484499. 10.1016/0021-9797(86)90183-9Search in Google Scholar

7.Patist, A, et al.: Effect of chain length compatibility on micellar stability in sodium dodecyl sulfate/alkyltrimethylammonium bromide solutions. Langmuir13 (3) (1997)432434. 10.1021/la960838tSearch in Google Scholar

8.Amos, D. A., et al.: Osmotic pressure and interparticle interactions in ionic micellar surfactant solutions. J. Phys. Chem. B102 (15) (1998)27392753. 10.1021/jp9805407Search in Google Scholar

9.Lang, J., et al.: Chemical relaxation studies of micellar equilibria. J. Phys. Chem.79 (3) (1975)276283. 10.1021/j100570a017Search in Google Scholar

10.Kahlweit, M.: Kinetics of formation of association colloids. J. Colloid Interface Sci.90 (1) (1982)9299. 10.1016/0021-9797(82)90401-5Search in Google Scholar

11.Lessner, E., Teubner, M. and Kahlweit, M.: Relaxation experiments in aqueous solutions of ionic micelles. 1. Theory and experiments on the system H2O-sodium tetradecyl sulfate-NaClO4. J. Phys. Chem.85 (11) (1981)15291536. 10.1021/j150611a014Search in Google Scholar

12.Inoue, T., Shibuya, Y. and Shimozawa, R.: Chemical relaxation studies in micellar solutions of sodium alkyl sulfates. J. Colloid Interface Sci.65 (2) (1978)370379. 10.1016/0021-9797(78)90168-6Search in Google Scholar

13.Herrmann, C. U. and Kahlweit, M.: Kinetics of micellization of Triton X-100 in aqueous solutions. J. Phys. Chem.84 (12) (1980)15361540. 10.1021/j100449a021Search in Google Scholar

14.Halliday, D., Resnick, R. and Walker, J.: Fundamentals of Physics. 4th ed.1993, New York: Wiley.Search in Google Scholar

15.Lessner, E., Teubner, M. and Kahlweit, M.: Relaxation experiments in aqueous-solutions of ionic micelles. 2. Experiments on the system H2O-NaDS-NaClO4 and their theoretical interpretation. J. Phys. Chem.85 (21) (1981)31673175. 10.1021/j150621a033Search in Google Scholar

16.Helenius, A., et al.: Properties of detergents. Methods Enzym. Biomembr.56(1979)734749. 10.1016/0076-6879(79)56066-2Search in Google Scholar

17.le Maire, M., Champeil, P. and Moller, J. V.: Interaction of membrane proteins and lipids with solubilizing detergents. Biochim. Biophys. Acta, Biomembr.1508 (1–2) (2000)86111. 10.1016/S0304-4157(00)00010-1Search in Google Scholar

18.Midura, R. J. and Yanagishita, M.: Chaotropic solvents increase the critical micellar concentrations of detergents. Anal. Biochem.228 (2) (1995)318322. 10.1006/abio.1995.1357Search in Google Scholar PubMed

19.Ray, A., et al.: Binding of large organic anions and neutral molecules by native bovine serum albumin. Biochemistry5 (8) (1966)2606. 10.1021/bi00872a019Search in Google Scholar PubMed

20.Rump, H. H.: Laboratory Manual for Examination of Water, Waste Water and Soil. 1999, Weinheim, Germany: Wiley-VCH Verlag.Search in Google Scholar

21.Mukerjee, P. and Mysels, K. J.: Critical Micelle Concentration in Aqueous Surfactant Systems. 1971, Washington, D.C.: National Bureau of Standards, NSRDS-NBS 36.Search in Google Scholar

22.Oh, S. G. and Shah, D.O.: Relationship between micellar lifetime and foamability of sodium dodecyl sulfate and sodium dodecyl sulfate/1-hexanol mixtures. Langmuir7 (7) (1991)13161318. 10.1021/la00055a004Search in Google Scholar

23.Oh, S. G., Jobalia, M. and Shah, D. O.: The effect of micellar lifetime on the droplet size in emulsions. J. Colloid Interface Sci.156 (2) (1993)511514. 10.1006/jcis.1993.1146Search in Google Scholar

24.Chattopadhyay, A. K., et al.: Salt effects on monolayers and their contribution to surface viscosity. J. Phys. Chem.96 (15) (1992)65096513. 10.1021/j100194a074Search in Google Scholar

25.Boys, C. V.: Soap Bubbles. 1924, London and New York: Macmillan.Search in Google Scholar

26.Davies, J. T. and Rideal, E. K.: Interfacial Phenomena. 2nd ed.1963, New York and London: Academic Press.Search in Google Scholar

27.Rosen, M. J.: Surfactants and Interfacial Phenomena. 3rd ed.2004, Hoboken, New Jersey: John Wiley & Sons. 10.1002/0471670561Search in Google Scholar

28.Chou, S. I. and Shah, D. O.: Optimal Salinity of Polymer Solution in Surfactant-Polymer Flooding Process. Surface Phenomena in Enhanced Oil Recovery. 1981, NY: Plenum Press.10.1007/978-1-4757-0337-5_38Search in Google Scholar

Received: 2007-03-09
Accepted: 2007-04-05
Published Online: 2013-04-02
Published in Print: 2007-06-01

© 2007, Carl Hanser Publisher, Munich