Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 5, 2013

Analysis of the Influence of Alkyl Polyglycoside Surfactant and Cosolvent Structure on Interfacial Tension in Aqueous Formulations versus n-Octane

Analyse des Einflusses der Struktur von Alkylpolyglucosiden und von Ko-Lösungsmitteln auf die Grenzflächenspannung von wässrigen Formulierungen gegen n-Oktan
  • S. Iglauer , Y. Wu , P. Shuler , Y. Tang and W. A. Goddard

Abstract

We studied the influence of molecular structural elements of alkyl polyglycoside (APG) surfactants on the interfacial tension (IFT) in aqueous formulations against n-octane. This included the analysis of alkyl and aryl chain length, type and number of sugar-ring head, anomers, addition of cosolvents and effect of salt addition. We found that longer alkyl or aryl chains lead to lower IFT, consistent with data recorded for commercial (mixed) APGs. APGs with only one sugar-ring head had lower IFT than their analog maltose derivates (two-ring head). Intriguingly the stereochemistry of the sugar head (i.e. galactose versus glucose) and the type of anomer showed a significant influence on IFT. The n-octyl-α-D-glucopyranoside anomer had a lower IFT than the corresponding β-anomer. 1-octanol and 1-hexanol were efficient cosolvents consistent with the datasets observed for commercial APGs. Salt addition reduced IFT. Functional groups (aldehyde, amide-methoxy) integrated into the molecular architecture of the APG skeleton were efficient in terms of significantly reducing IFT, suggesting a strategy for the molecular design of advanced APG surfactants. We discuss the results in the context of the hydrophilic-lipophilic deviation (HLD) concept, which we modified so that IFT values are discussed instead of phase behavior.

Kurzfassung

Wir untersuchten den Einfluss molekularer Strukturelemente von Alkylpolyglucosiden (APG) auf die Grenzflächenspannung (IFT) von wässrigen Formulierungen gegenüber n-Oktan. Dies schloss die Analyse der Alkyl- und der Arylkettenlänge, den Typ und die Anzahl der Zucker-Kopfgruppen, Anomere, die Zugabe von Ko-Lösungsmitteln und den Effekt von Salzzugabe ein. Wir fanden in Übereinstimmung mit den Daten für kommerzielle APG (-Mischungen), dass mit längerer Alkyl- oder Arylkettenlänge die IFT abnimmt. APGs mit nur einer Zucker-Kopfgruppe wiesen eine niedrigere IFT auf als die analogen Maltosederivate (mit 2 Zuckerringen als Kopfgruppe). Die Stereochemie der Zucker-Kopfgruppe (z.B. Galaktose im Vergleich zu Glucose) und der Typ des Anomers zeigten einen signifikanten Einfluss auf die IFT. Das n-Octyl-α-D-Glucopyranoseanomer senkte die IFT stärker als das analoge β-Anomer. 1-Oktanol und 1-Hexanol waren wirksame Ko-Lösungsmittel; dies ist konsistent mit Daten für kommerzielle APGs. Die Zugabe von Salzen reduzierte die IFT. Funktionale Gruppen (Aldehyde, Amid-Methoxy) in der APG-Molekülarchitektur konnten die IFT signifikant senken. Dies eröffnet neue Moleküldesignstrategien zur Entwicklung verbesserter APG-Formulierungen. Wir diskutieren unsere Ergebnisse im Zusammenhang mit dem Konzept der hydrophilen-lipophilen Abweichung (HLD), das wir so modifizierten, dass wir IFT-Werte anstatt des Phasenverhaltens analysieren.


Dr. Yongchun Tang, Division of Chemistry & Chemical Engineering, Power, Energy Environmental Research (PEER) Center, California Institute of Technology, Covina, CA 91722, U.S.A. E-Mail:

Dr. Stefan Iglauer is a Research Associate at Imperial College London. His research interests include carbon dioxide sequestration, multi-phase flow in porous media, interfacial science, polymer technology and enhanced oil recovery. Dr. Iglauer earned his chemistry degree from the University of Paderborn and received his PhD from the Oxford Brookes University. He worked as a Postdoctoral scholar in chemistry at the California Institute of Technology from 2003–2005.

Dr. Yongfu Wu is a Research Assistant Professor with the Petroleum Engineering Program at Missouri University of Science and Technology (MS&T). Dr. Wu's research interests include surfactants and interfacial phenomena such as adsorption, aggregation, dispersion, emulsion, foaming, spreading and wetting, as well as development of novel surfactants and formulations for enhanced oil recovery (EOR), remediation of aquifer and groundwater and other surfactant-related industrial applications. Currently his research focuses on the fundamental aspects of enhanced oil recovery by chemical technologies.

Dr. Patrick Shuler currently is on the research staff at the PEERI (Power, Environmental, and Energy Research Institute) located in Covina, CA. There he has been directing government and industry-sponsored research projects in chemical-based Enhanced Oil Recovery (EOR) for the past 9 years. Previous to joining PEERI he worked for over 22 years in Chevron Corporation's upstream R&D organization. While there he specialized in research in chemical EOR and in other aspects of oil and gas production chemistry. Dr. Shuler earned undergraduate and graduate degrees in chemical engineering degrees from the University of Notre Dame, and the University of Colorado, respectively.

Dr. Yongchun Tang is currently the Director of the Power, Energy, and Environmental Research (PEER) Center in the Division of Chemistry and Chemical Engineering at the California Institute of Technology. Besides overseeing the operation of the PEER Center, with a staff of approximately 20 people, he has directed projects in several areas, including hydrocarbon generation and gas-to-liquids conversion. Dr. Tang also is an adjunct professor with Cornell University and the Cola Research and Geochemistry Institutes in the Chinese Academy of Science.

Prof. William A. Goddard III has been a member of the Faculty of the Chemistry Department at the California Institute of Technology (Caltech) since November 1964, where he is now Charles and Mary Ferkel Professor in Chemistry, Materials Science, and Applied Physics. His research career has focused on developing methods to solve problems in catalysis, materials science, and pharma from first principles (no use of empirical data). He uses multiscale multiparadigm technologies to make first principles methods practical for critical problems in catalysis, nanotechnology, fuel cells, and pharma. Thus, his work bridges between fundamentals of physics and chemistry, new developments in computer science, and practical applications. Professor Goddard has published over 816 scientific articles. See http://www.wag.caltech.edu/publications/papers/.


References

1. Balzer, D.: Process for the extraction of crude oil from an underground deposit using surfactants. U.S. Patent 4,985,154, 1991.Search in Google Scholar

2. Balzer, D. and Lüders, H. (editors): Nonionic Surfactants, Alkyl Polyglycosides, Surfactant Science Series, 91, New York: Marcel Dekker, 2000.Search in Google Scholar

3. Iglauer, S., Wu, Y., Shuler, P. J., Tang, Y. and Goddard, W. A.: Alkyl Polyglycoside Surfactant-Alcohol Cosolvent Formulations for Improved Oil Recovery, Colloids and Surfaces A: Physicochemical and Engineering Aspects.339 (2009) 4859. 10.1016/j.colsurfa.2009.01.015Search in Google Scholar

4. Hill, K., von Rybinski, W. and Stoll, G. (editors): Alkyl Polyglucosides, Weinheim: VCH, 1997, ISBN: 9783527294510.10.1002/9783527614691Search in Google Scholar

5. Garst, R.: Alkyl Polyglycosides – New Solutions for Agricultural Applications, in: Alkyl Polyglycosides (editors: Hill, von Rybinski, Stoll), Weinheim: VCH, 1997.Search in Google Scholar

6. Pakpayat, N., Nielloud, F., Fortune, R., Tourne-Peteilh, Villareal, A., Grillo, I. and Bataille, B.: Formulation of ascorbic acid microemulsions with alkyl polyglycosides, European Journal of Pharmaceutics and Biopharmaceutics72 (2009) 444452. 10.1016/j.ejpb.2009.01.005Search in Google Scholar

7. Fischer, E.et al.: Chem. Ber.26 (1893) 2400. 10.1002/cber.18930260327Search in Google Scholar

8. Fischer, E.et al.: Lieb. Ann.68 (1911) 383.Search in Google Scholar

9. Waldhoffet al.: in: Hill, K., von Rybinski, W., Stoll, G. (editors): Alkyl Polyglucosides, Weinheim: VCH, 1997, ISBN: 9783527294510.Search in Google Scholar

10. Peypoux, F., Bonmatin, J. M. and Wallach, J.: Recent trends in the biochemistry of surfactin, Appl. Microbiol. Biotechnol.51 (1999) 553563. 10.1007/s002530051432Search in Google Scholar

11. Iglauer, S., Wu, Y., Shuler, P. J., Blanco, M., Tang, Y. and GoddardIII, W. A.: Alkylpolyglycoside Surfactants for Improved Oil Recovery, SPE/DOE 89472, proceedings of the SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK, April 17–21, 2004.10.2118/89472-MSSearch in Google Scholar

12. Iglauer, S., Wu, Y., Shuler, P. J., Tang, Y., Blanco, M. and Goddard, W. A.: The influence of Alcohol Co-surfactants on the Interfacial Tensions of Alkylglycoside Surfactant Formulations vs. n-Octane, proceedings of the ACS 227th National Meeting, Division of Petroleum Chemistry, Anaheim, CA, USA, 2004.Search in Google Scholar

13. Wu, Y., Iglauer, S., Shuler, P. J., Tang, Y., Blanco, M. and Goddard, W. A.: Synergistic Effect of Alkyl Polyglycoside and Sorbitan Mixtures on Lowering Interfacial Tension and Enhancing Oil Recovery, proceedings of the ACS 227th National Meeting, Division of Petroleum Chemistry, Anaheim, CA, USA, 2004.Search in Google Scholar

14. Goddard, W. A., Tang, Y., Shuler, P. J., Blanco, M., Jang, S. S., Lin, S. T., Maiti, P., Wu, Y., Iglauer, S. and Zhang, X.: Lower Cost Methods for Improved Oil Recovery (IOR) via Surfactant Flooding, DOE Project DE-FC 26-01BC15362, Final Report, September 2004.Search in Google Scholar

15. Balzer, D.: Alkylpolyglcosides, their Physico-chemical Properties and their Uses, Tenside Surf. Det.28 (6) (1991) 419427.Search in Google Scholar

16. Bertsch, H. and Rauchalles, G.: U.S. Patent 2,049,758, 1934.Search in Google Scholar

17. Hill, K. and Rhode, O.: Sugar-based surfactants for consumer products and technical applications, Fett/Lipid25–33 (1999) 10.Search in Google Scholar

18. Kutschmann, E. M., Findenegg, G. H., Nickel, D. and von Rybinski, W.: Interfacial tension of alkylglucosides in different APG/oil/water systems, Colloid Polym. Sci.273 (1995) 565571. 10.1007/BF00658686Search in Google Scholar

19. Förster, T., et al.: Physico-chemical basics of microemulsions with alkyl polyglycosides, Progr. Colloid Polym. Sci.101 (1996) 105112. 10.1007/BFb0114432Search in Google Scholar

20. von Rybinski, W., Guckenbiehl, B. and Tesmann, H.: Influence of co-surfactants on microemulsions with alkyl polyglycosides, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 142 (1998) 333342. 10.1016/S0927-7757(98)00527-5Search in Google Scholar

21. Tang, Y., Shuler, P. J., Wu, Y. and Iglauer, S.: Chemical System for Improved Oil Recovery, US-Patent Application 20060046948, 2006.Search in Google Scholar

22. Nickel, D., Förster, T. and von Rybinski, W.: Physicochemical Properties of Alkyl Polyglycosides, in: Alkyl Polyglycosides (editors: Hill, von Rybinski, Stoll), Weinheim: VCH, 1997.Search in Google Scholar

23. Kahl, H., Kirmse, K. and Quitzsch, K.: Grenzflächenspannungen in mehrphasigen Mischsystemen mit Alkylpolyglucosiden, Tenside, Surfactants, Detergents, 33(1) (1996) 2632.Search in Google Scholar

24. Shinoda, K., Yamaguchi, T. and Hori, R.: Bull. Chem. Soc. Jpn.34 (1961) 237. 10.1246/bcsj.34.237Search in Google Scholar

25. Green, D.W. and Willhite, G. P.: Enhanced oil recovery, SPE Publications, 1998, ISBN: 978-1-55563-077-5.Search in Google Scholar

26. Abrams, A.: The Influence of Fluid Viscosity, Interfacial Tension, and Flow Velocity on Residual Oil Saturation left by Waterflood, SPEJ, 437–447 (1975).Search in Google Scholar

27. Plusquellec, D., Chevalier, G., Talibart, R. and Wroblewski, H.: Anal. Biochem.179 (1989) 145153. 10.1016/0003-2697(89)90215-7Search in Google Scholar

28. Anatrace, Product Catalog, 5th Edition, February 2009.Search in Google Scholar

29. Cayias, J. L., Schechter, R. S. and Wade, W. H.: The Measurement of Low Interfacial Tension via the Spinning Drop Technique, section 17, Surfactant Applications, 1977.Search in Google Scholar

30. Kahlweit, M., Busse, G. and Faulhaber, B.: Preparing Microemulsions with Alkyl Monoglucosides and the Role of n-Alcohols, Langmuir11 (1995) 33823387. 10.1021/la00009a019Search in Google Scholar

31. Nardello, V., Chailloux, N., Poprawski, J., Salager, J.-L. and Aubry, J.-M.: HLD concept as a tool for the characterization of cosmetic hydrocarbon oils, Polymer International52 (2003) 602609. 10.1002/pi.1012Search in Google Scholar

32. Bourrel, M. and Schechter, R. S.: Microemulsions and Related Systems: Formulation, Solvency, and Physical Properties, New York: Marcel Dekker, 1988.Search in Google Scholar

33. Bourrel, M., Salager, J. L., Schechter, R. S. and Wade, W. H.: A correlation for phase behaviour of non-ionic surfactants, Journal of Colloid and Interface Science2, 451461 (1980) 75. 10.1016/0021-9797(80)90470-1Search in Google Scholar

34. Salager, J.-L., Marquez, N., Graciaa, A. and Lachaise, J.: Partitioning of ethoxylated octylphenol surfactants in microemulsion-oil-water systems: influence of temperature and relation between partitioning coefficient and physicochemical formulation, Langmuir16 (2000) 55345539. 10.1021/la9905517Search in Google Scholar

35. Witthayapanyanon, A., Harwell, J. H. and Sabatini, D. A.: Hydrophilic-lipophilic deviation (HLD) method for characterizing conventional and extended surfactants, Journal of Colloid and Interface Science325 (2008) 259266. 10.1016/j.jcis.2008.05.061Search in Google Scholar

36. Graciaa, A., Barakat, Y., El-Emary, M., Fortney, l., Schechter, R. S, Yiv, S. and Wade, W. H.: HLB, CMC and phase behaviour as related to hydrophobe branching, Journal of Colloid and Interface Science89 (1) (1982) 209216. 10.1016/0021-9797(82)90134-5Search in Google Scholar

37. Healy, R. N. and Reed, R. L.: Improved Oil Recovery by Surfactant and Polymer Flooding, New York: Academic Press, 1977.Search in Google Scholar

38. Shinoda, K. and Friberg, S.: Emulsion & Solubilization, New York, 1986.Search in Google Scholar

39. Shinoda, K.: Journal of Colloid and Interface Science4 (1976) 24.Search in Google Scholar

40. Karasawa, N., Dasgupta, S. and Goddard, W. A.: Mechanical-Properties and Force-Field Parameters for Polyethylene Crystal, Journal of Physical Chemistry, 95 (6) (1991) 22602272. 10.1021/j100159a031Search in Google Scholar

41. Kahlweit, M., Strey, R. and Busse, G.: Effect of Alcohols on the Phase Behavior of Microemulsions, Journal of Physical Chemistry95 (13) (1991) 53445352. 10.1021/j100166a077Search in Google Scholar

42. Mitchell, D. J. and Ninham, B. W.: Micelles, vesicles and microemulsions, Journal of the Chemical Society, Faraday Transactions vesicles and microemulsions, Journal of the Chemical Society, Faraday Transactions: Molecular and Chemical Physics77 (1981) 601629.Search in Google Scholar

43. Strey, R. and Jonströmer, M.: Role of medium-Chain Alcohols in Interfacial Films of Nonionic Microemulaions, Journal of Physical Chemistry96 (1992) 45374542. 10.1021/j100190a075Search in Google Scholar

44. DeGennes, P. and Taupin, C.: Microemulsions and the flexibility of oil-water interfaces, Journal of Physical Chemistry86 (1982) 22942304. 10.1021/j100210a011Search in Google Scholar

45. Sabatini, D. A., Acosta, E. and Harwell, J. H.: Linker Molecules in Surfactant Mixtures, Current Opinion in Colloid and Interface Science8 (2003) 316326. 10.1016/S1359-0294(03)00082-7Search in Google Scholar

46. Lide, D. R.: CRC Handbook of Chemistry & Physics, 87th Edition, Chemical Ruber Co., Ohio, 2007.Search in Google Scholar

Received: 2009-09-30
Published Online: 2013-04-05
Published in Print: 2010-03-01

© 2010, Carl Hanser Publisher, Munich

Downloaded on 8.2.2023 from https://www.degruyter.com/document/doi/10.3139/113.110056/html
Scroll Up Arrow