Accessible Requires Authentication Published by De Gruyter April 11, 2013

Adsorption Studies of Basic Green 4 from Aqueous Solution on Ca2+ Exchanged Clay

Untersuchung der Adsorption von Malachitgrün aus wässriger Lösung auf Ca2+ ausgetauschten Tonerden
F. K. Bangash, S. Alam and M. Khan

Abstract

The adsorption of basic green 4 from aqueous solution on calcium exchanged clay (Attock-Ca and Swat-Ca) was studied. Clays were first purified and activated with H2SO4 and then exchanged with Ca2+ ions. Clay was characterized by BET surface area, XRD and SEM/EDS. The adsorption kinetic at 298 K and 306 K showed that the first order models were applied to the data. The rate constant increased with the rise in temperature of adsorption/activation. Thermodynamic properties (ΔE, ΔH, ΔS and ΔG) for the adsorption process were calculated. Positive values of ΔH showed that the adsorption of basic green 4 is endothermic. Positive values of ΔS reflected the increase in the disorder of the system at the solid-solution interface during adsorption. The Gibbs free energy, which is the driving force for adsorption is negative indicating spontaneous adsorption. Freundlich's and Langmuir's models described the equilibrium adsorption study and found to fit the experimental data.

Kurzfassung

Es wurde die Adsorption von Malachitgrün aus wässriger Lösung auf Ca2+ ausgetauschten Tonerden (Attock-Ca und Swat-Ca) untersucht. Die Tonerden wurden zuerst gereinigt und mit H2SO4 aktiviert. Dann wurden sie einem Austausch mit Ca2+-Ionen unterzogen. Diese Tonerden wurden mit der BET-Methode, der Röntgenbeugung (XRD) und im Rasterelektronenmikroskop (SEM) mittels Energiedisperser Röntgenanalyse (EDX) charakterisiert. Die Adsorptionskinetik bei 298 K und bei 306 K zeigte, dass die Daten einem Modell erster Ordnung gehorchen. Die Geschwindigkeitskonstante steigt mit zunehmender Adsorptions- bzw. Aktivierungstemperatur. Die thermodynamischen Eigenschaften (ΔE, ΔH, ΔS and ΔG) des Adsorptionsvorgangs wurden berechnet. Die positiven Werte für ΔH zeigen, dass die Adsorption von Malachitgrün endotherm ist. Die positiven Werte für ΔS lassen auf eine zunehmende Unordnung des Systems an der Fest-Flüssig-Grenzfläche während der Adsorption schließen. Die Gibbs-Energie ΔG, die die treibende Kraft der Adsorption ist, ist negativ, was auf eine spontane Adsorption hinweist. Die experimetellen Ergebnisse passen sowohl zum Freundlich- als auch zum Langmuir-Modell.


Dr. Sultan Alam, Chairman, Department of Chemistry, University of Malakand, Chakdara Dir (L), Pakistan. E-Mail:

Dr. Fazlullah Khan Bangash is Professor in Physical Chemistry, University of Peshawar. His research interest includes characterization of adsorbents, water pollution and surface chemistry at the solid liquid interface.

Dr. Sultan Alam is Assistant Professor in Physical Chemistry, University of Malakand, at Chakdara, Dir (L), Pakistan. His research interest includes, conversion of low cost precursors into activated carbon like agricultural waste material, fast growing wood and animal bones, regeneration of industrial spent carbon, characterization of adsorbents by pH, moisture content, ash content, surface area (BET, DR, BJH, and Langmuir), pore size distribution, FTIR, XRD, SEM and EDS, surface chemistry at solid-liquid interface i.e. Activated carbon and Clays.

Mr. Mashooq Khan is Ph.D. research scholar in the Department of Chemistry, University of Malakand, Pakistan. His field of specialization is Microporous and Mesoporous Materials. He is working in the research group of Dr. Sultan Alam.


References

1. Kadirvelu, K., Karthika, C., Vennilamani, N. and Pattabhi, S.: Chemosphere60 (2005) 1009. 10.1016/j.chemosphere.2005.01.047 Search in Google Scholar

2. Robinson, T., Chandran, B. and Nigam, P.: Environ. Int.28 (2002) 29. 10.1016/S0160-4120(01)00131-3 Search in Google Scholar

3. Figueiredo, S. A., Boaventura, R. A. and Loureiro, J. M.: Sep. Purif. Technol.20 (2000), 129. 10.1016/S1383-5866(00)00068-X Search in Google Scholar

4. Aksu, Z. and Tezer, S.: Process Biochem.40 (2005) 1347. 10.1016/j.procbio.2004.06.007 Search in Google Scholar

5. Acemioglu, B.: J. Colloid Interface Sci.274 (2004) 371. 10.1016/j.jcis.2004.03.019 Search in Google Scholar

6. Netpradit, S., Thiravetyan, P. and Towprayoon, S.: J. Colloid Interface Sci.270 (2004) 255. 10.1016/j.jcis.2003.08.073 Search in Google Scholar

7. Martin, M. J., Artola, A., Balaguer, M. D. and Rigola, M.: Chem. Eng. J.94 (2003) 231. 10.1016/S1385-8947(03)00054-8 Search in Google Scholar

8. Özcan, A. S. and Özcan, A. J., Colloid Interface Sci.276 (2004) 39. 10.1016/j.jcis.2004.03.043 Search in Google Scholar

9. Wibulswas, R.: Sep. Purif. Technol.39 (2004) 3. 10.1016/j.seppur.2003.12.018 Search in Google Scholar

10. Crini, G.: Bioresour. Technol.97 (2006) 1061. 10.1016/j.biortech.2005.05.001 Search in Google Scholar

11. Bangash, F. K. and Alam, S.: Braz. J. Chem. Eng.26 (2009) 275. 10.1590/S0104-66322009000200005 Search in Google Scholar

12. Bangash, F. K. and Alam, S.: J. Chin. Chem. Soc.54 (2007) 1. Search in Google Scholar

13. Alam, S., Bangash, F. K. and AhmadI.: Chin. J. Chem.25 (2007) 596. 10.1002/cjoc.200790112 Search in Google Scholar

14. Bangash, F. K. and Alam, S.: J. Chem. Soc. Pak.29 (2007) 401. Search in Google Scholar

15. Alam, S., Bangash, F. K. and Khan, H.: J. Chem. Soc. Pak.29 (2007) 558. Search in Google Scholar

16. Bangash, F. K. and Alam, S.: J. Chin. Chem. Soc.53 (2006) 1091. Search in Google Scholar

17. Bangash, F. K. and Alam, S.: Tenside Surf. Det.43 (2006) 299. Search in Google Scholar

18. Bangash, F. K., Alam, S.: J. Chem. Soc. Pak.28 (2006) 528. Search in Google Scholar

19. Alam, S., Ahmad, M. and Bangash, F. K.: Tenside Surf. Det.4 (2009) 61. Search in Google Scholar

20. Lazaridis, N. K., Karapantsios, T. D. and Geogantas, D.: Water Res.37 (2003) 3023. 10.1016/S0043-1354(03)00121-0 Search in Google Scholar

21. Shawabkeh, R. A. and Tutunji, M. F.: Appl. Clay Sci.24 (2003) 111. 10.1016/S0169-1317(03)00154-6 Search in Google Scholar

22. Neumann, M. G., Gessner, F., Schmitt, C. C. and Sartori, R. J.: Colloid Int. Sci.255 (2002) 254. 10.1006/jcis.2002.8654 Search in Google Scholar

23. Ghosh, D. and Bhattacharyya, K. G.: Appl. Clay Sci.20 (2002) 295. 10.1016/S0169-1317(01)00081-3 Search in Google Scholar

24. Pala, A. and Tokat, E.: Water Res.36 (2002) 2920. 10.1016/S0043-1354(01)00529-2 Search in Google Scholar

25. Harris, R. G., Wells, J. D. and Johnson, B. B.: Colloid Surf. A: Physicochem. Eng. Aspects180 (2001) 131. 10.1016/S0927-7757(00)00747-0 Search in Google Scholar

26. Ho, Y. S., Chiang, C. C. and Hsu, Y. C.: Sep. Sci. Technol.36 (2001) 2473. 10.1081/SS-100106104 Search in Google Scholar

27. Bagane, M. and Guiza, S.: Ann. Chem. Sci. Mater.25 (2000) 615. 10.1016/S0151-9107(00)90003-5 Search in Google Scholar

28. Ramakrishna, K. R. and Viraraghavan, T.: Water Sci. Technol.36 (1997) 189. Search in Google Scholar

29. Yukselen, Y. and Kaya, A.: Water, Air and Soil Pollution145 (2003) 155. 10.1023/A:1023684213383 Search in Google Scholar

30. Bolloand, M. D. A., Posner, A. M. and Quirk, J. P.: Aust. J. Soil Res.14 (1976) 197. 10.1071/SR9760197 Search in Google Scholar

31. Schroth, B. K. and Sposito, G.: Clay and Clay Minerals45 (1997) 85. 10.1346/CCMN.1997.0450110 Search in Google Scholar

32. Annadurai, G. and Lee, J.: Environ. Chem. Lett.6 (2008) 77. 10.1007/s10311-007-0112-3 Search in Google Scholar

33. Saikia, N. J., Bharali, D. J., Sengupta, P., Bordloi, D., Goswamee, R. L., SaikiaP.C. and Borthakur, P. C.: Appl. Clay Sci.24 (2003) 93. 10.1016/S0169-1317(03)00151-0 Search in Google Scholar

34. Raymahashay, B. C.: J. Geol. Soc.30 (1987) 408. Search in Google Scholar

35. Tahir, S. S. and Rauf, N.: Chemosphere63 (2006) 842. 10.1016/j.chemosphere.2005.10.033 Search in Google Scholar

Received: 2011-03-29
Published Online: 2013-04-11
Published in Print: 2011-09-01

© 2011, Carl Hanser Publisher, Munich