Accessible Requires Authentication Published by De Gruyter April 11, 2013

Volumetric and Diffusion Properties of Water/Surfactant/n-Propanol/4-Allylanisole Micellar Systems

Volumetrische Eigenschaften und Diffusionsverhalten von Wasser/Tensid/n-Propanol/4-Allylanisol-Systemen
M. Fanun, A. Shakarnah, D. Meltzer, M. Schwarze, R. Schomäcker and J. Blum

Abstract

Sol-gel encaged [(C8H17)3NCH3][RhCl4] catalyses the double bond isomerization in the flavoring agent 4-allylanisole in aqueous microemulsions. In order to provide optimal composition of the reaction medium water/n-propanol/surfactant/4-allylanisole micellar systems were formulated. The surfactants were sodium dodecyl sulfate, cetyltrimethylammonium bromide, sucrose monolaurate, and polyethylene glycol (7) glyceryl cocoate. The ratio (w/w) of n-propanol/surfactant equals 2/1. The extent of the microemulsions region as function of temperature was determined. The micellar systems were characterized by the volumetric parameters, density, excess volume, ultrasonic velocity and isentropic compressibility. The micellar densities increase with the increase in the water volume fraction. Ultrasonic velocities increase with the increase in water volume fraction up to 0.8 then decrease. Ultrasonic velocities increase with temperature for water volume fractions below 0.8 and decrease for water volume fractions above 0.8. Quantitative analysis of the volumetric parameters enabled the characterization of structural transition along the micellar phase. The particle hydrodynamic diameter of the oil-in-water systems was determined as function of temperature. The particle hydrodynamic diameter decreases in the case of the ionic surfactants while in the case of nonionic surfactants it increases.

Kurzfassung

Das in einem Sol-Gel eingeschlossene [(C8H17)3NCH3][RhCl4] katalysiert die Isomerisierungsreaktion an den Doppelbindungen des Aromastoffs 4-Allylanisol in wässrigen Mikroemulsionen. Mit dem Ziel, die optimale Zusammensetzung des Reaktionsmediums zu finden, wurden mizellare Systeme aus Wasser/n-Propanol/Tensid/4-Allylanisol formuliert. Bei den verwendeten Tensiden handelt es sich um Natriumdodecylsulfat, Cetyltrimethylammoniumbromid, Saccharosemonolaurat, und Polyethylenglykol-(7)glycerylcocoat. Das Verhältmis (w/w) von n-Propanol zu Tensid betrug 2:1. Die Größe des Mikroemulsionsbereiches wurde als Funktion der Temperatur bestimmt. Die mizellaren Systeme wurden anhand volumetrischer Parameter, der Dichte, des Überschussvolumens, der Ultraschallgeschwindigkeit und der adiabatischen Kompressibilität charakterisiert. Die mizellaren Dichten nehmen mit steigendem Volumenanteil des Wassers zu. Die Ultraschallgeschwindigkeiten steigen mit zunehmenden Volumenanteilen des Wassers an bis der Volumenanteil 0,8 beträgt, dann sinken die Ultraschallgeschwindigkeiten. Für Volumenanteile unterhalb von 0.8 steigen die Ultraschallgeschwindigkeiten mit der Temperatur und fallen bei Volumenanteilen von Wasser größer als 0,8. Mittels der quantitativen Analyse der volumetrischen Parameter konnte der Strukturübergang entlang der mizellaren Phase charakterisiert werden. Der hydrodynamische Partikeldurchmesser der Öl-in-Wasser-Systeme wurde als Funktion der Temperatur bestimmt. Der hydrodynamische Partikeldurchmesser nimmt bei Verwendung von ionischen Tensiden ab und bei Verwendung nichtionischer Tenside zu.


Dr. Monzer Fanun, Colloids and Surfaces Research Center, Al-Quds University, East Jerusalem 51000, Palestine, Tel.: +972522406061, Fax: +97222796960. E-Mail: ,

Dr. Monzer Fanun received his PhD in applied chemistry at the Hebrew University of Jerusalem. He is a professor and head of the colloids and surfaces research center at Al-Quds University, East Jerusalem, Palestine. His research focuses on colloidal systems for health care products and surfactant-based alternatives to organic solvents.

Dr. Jochanan Blum is Professor Emeritus of Organic Chemistry at the Hebrew University of Jerusalem. His current research interest is directed to sustainable chemistry, including studies on the replacement of organic solvents in chemical reactions by water, catalysis by organometallics new methods for catalyst recycling and domino reactions.

Prof. Dr. Reinhard Schomäcker received his PhD in Physical Chemistry at the University of Bielefeld. After a postdoctoral fellowship at the Max-Planck Institute of biophysical Chemistry in Göttingen and six year as senior scientist with the Bayer AG in Leverkusen he became a professor for Technical Chemistry at the TU Berlin. His research interests are catalysis, alternative reaction media, integrated reactor and process concepts and the application of colloidal systems in Chemical Engineering.

Dr. Michael Schwarze received his PhD in Technical Chemistry at the Technical University of Berlin. Since 2009, he is a postdoctoral research fellow at the Technical University of Berlin and focuses his research on integrated reactions, alternative reaction media, membrane separation, and photocatalytic water splitting.

Diana Meltzer completed her M.Sc. studies under the guidance of Professor Blum at the Institute of Chemistry of the Hebrew University. She is the recipient of numerous prizes for outstanding achievements in her studies and research in the field of green chemistry.

Ahmad Shakarnah is conducting his M.Sc. studies under the guidance of Professor Fanun at the Applied and Industrial Technology Program at Al-Quds University, East Jerusalem, Palestine.


References

1. Wei, W., Keh, C. C. K., Li, C.-J. and Varma, R. S.: Chem. Tech. Environ., Policy6 (2004) 250 and references cited therein. 10.1007/s10098-003-0242-7 Search in Google Scholar

2. Lindström, U. M. (Ed.): Organic Reactions in Water: Principles Strategies and Applications, Blackwell, Oxford, 2007. 10.1002/9780470988817 Search in Google Scholar

3. Butler, R. V. and Coyne, A. G.: Chem. Rev.110 (2010) 6320. 10.1021/cr100162c Search in Google Scholar

4. Corenils, B.: Angew Chem Int. Ed.42 (2003) 2704. 10.1002/anie.200390495 Search in Google Scholar

5. Starks, M., Liotta, C. T. and Halpern, M.: Phase Transfer Catalysis: Fundamentals, Applications and Industrial Perspectives, Chapman and Hall, New York1994. Search in Google Scholar

6. Anderson, B. D. and Flora, K. P.: The Practice of Medical Chemistry, C. C.Wermuth (Ed.) Academic Press, London1996. Search in Google Scholar

7. Leadbeakr, N. E. and Marco, M.: Org. Lett.4 (2002) 2973. 10.1021/ol0263907 Search in Google Scholar

8. Dawars, T., Paetzold, E. and Oehme, G.: Angew Chem Int. Ed.44 (2005) 7174. 10.1002/anie.200501365 Search in Google Scholar

9. Meltzer, D., Avnir, D., Fanun, M., Gutkin, V., Popov, I., Schomäcker, R., Schwarze, M. and Blum, B.: J. Mol. Catalysis A: Chem.335 (2011) 8 and references therein. 10.1016/j.molcata.2010.12.002 Search in Google Scholar

10. Fanun, M. (Ed.): Microemulsions: properties and applications, part of Surfactants Science Series vol. 144, CRC Press/Taylor and Francis Inc., Boca Raton, Florida, USA, 2009. Search in Google Scholar

11. Kumar, P. and Mittal, K. L. (Eds.): Handbook of microemulsions science and technology. Marcel Dekker, New York, 1998. Search in Google Scholar

12. Fanun, M. (Ed.): Colloids in biotechnology, part of Surfactants Science Series, CRC Press/Taylor and Francis Inc., Boca Raton, Florida, USA, 2010. 10.1201/CRCSURFACSCI Search in Google Scholar

13. Fanun, M. (Ed.): Colloids in drug delivery, part of Surfactants Science Series vol. 148, CRC Press/Taylor and Francis Inc., Boca Raton, Florida, USA, 2010. 10.1201/CRCSURFACSCI Search in Google Scholar

14. Forgiarini, A., Esquena, J., Gonzalez, C. and Solans, C.: Langmuir17 (2001) 2076. 10.1021/la001362n Search in Google Scholar

15. Tadros, T., Izuierdo, P., Esquena, J. and Solans, C.: Adv. Colloid Interface Sci.108–109 (2004) 303. 10.1016/j.cis.2003.10.023 Search in Google Scholar

16. Sjostrom, B., Kaplun, A., Talmon, Y. and Cabane, B.: Pharm. Res.12 (1995) 39. 10.1023/A:1016278302046 Search in Google Scholar

17. Tiarks, F., Landfester, K. and Antonietti, M.: Langmuir17 (2001) 908. 10.1021/la001276n Search in Google Scholar

18. Antonietti, M., Landfester, K.: Porg. Polym. Sci.27 (2002) 689. 10.1016/S0079-6700(01)00051-X Search in Google Scholar

19. van Leeuwen, P. W. N. M.: Homogeneous Catalysis; Kluwer Academic Publishers: Dordrecht, 2004; pp. 101105. Search in Google Scholar

20. Bauer, K., Garbe, D. and Surburg, H.: Common Fragrance and Flavour Materials, 4th ed.; Wiley: New York, 2001; pp. 171226. Search in Google Scholar

21. Kraft, P. and Swift, K. A. D.: Current Topics in Flavour and Frangrance Research; Swift, K. A. D., Ed.; VHCA, Zurich, Switzerland, and Wiley-VCH Veralg GmbH, Weinheim, Germany, 2008. Search in Google Scholar

22. Alessandro, S., Marco, C., Paolo, S., Claudio, S., Rino, A. M. and Giorgio, S.: Organometallics29 (2010) 1487. 10.1021/om100033a Search in Google Scholar

23. Fanun, M.: J. Colloid Interface Sci.343 (2010) 496. 10.1016/j.jcis.2009.12.008 Search in Google Scholar

24. Fanun, M.: J. Disp. Sci. Technol.29 (2008) 1043. 10.1080/01932690701815473 Search in Google Scholar

25. Li, G., Kong, X., Guo, R. and Wang, X.: J. Dispersion Sci. Technol.5 (1989) 29. Search in Google Scholar

26. Sason, Y., Zoran, A. and Blum, J.: J. Mol. Catal.11 (1981) 293. 10.1016/0304-5102(81)87017-4 Search in Google Scholar

27. Rushforth, D. S., Sanchez-Rubio, M., Santo-Vidals, L. M., Wormuth, K. R., Kaler, E. W., Cuevas, R. and Puig, J. E.: J. Phys. Chem.90 (1986) 6668. 10.1021/j100283a015 Search in Google Scholar

28. Bellocq, A. M., Biais, J., Clin, B., Gelot, A., Lalanne, P. and Lemanceau, B.: J. Colloid Interface Sci.74 (1980) 311. 10.1016/0021-9797(80)90200-3 Search in Google Scholar

29. Pes, M. A., Aramaki, K., Nakamura, N. and Kunieda, H.: J. Colloid Interface Sci.178 (1996) 666. 10.1006/jcis.1996.0164 Search in Google Scholar

30. Kunieda, H. and Solans, C.: How to prepare microemulsions: temperature insensitive microemulsions. In: Kunieda, H.; Solans, C., Eds. Industrial Applications of Microemulsions; Marcel Dekker, Inc.,: New York, 1996. Search in Google Scholar

31. Fanun, M.: Colloid and Poly. Sci.287 (2009) 899. Search in Google Scholar

32. Fanun, M.: J. Disp. Sci. Technol.30 (2009) 399. 10.1080/01932690802548619 Search in Google Scholar

33. Hickey, S., Lawrence, M. J., Hagan, S. A. and Buckin, V.: Langmuir22 (2006) 5575. 10.1021/la052735t Search in Google Scholar

34. Mehta, S. K. and Bala, K.: Fluid Phase Equilibria172 (2000) 197. 10.1016/S0378-3812(00)00378-2 Search in Google Scholar

35. Mehta, S. K., Dewan, R. K. and Bala, K.: Physical Reviews E50 (1994) 4759. 10.1103/PhysRevE.50.4759 Search in Google Scholar

36. Mehta, S. K. and Bala, K.: Physical Reviews E51 (1995) 5732. 10.1103/PhysRevE.51.5732 Search in Google Scholar

37. Alberola, C., Dederichs, T., Emeis, D., Moller, M., Sokolowski, T. and Witten, K.-P.: J. Colloid Interface Sci.307 (2007) 500. 10.1016/j.jcis.2006.11.053 Search in Google Scholar

38. Ye, L., Weitz, D. A., Sheng, P., Bhattacharya, S., Huang, J. S. and Higgins, H. J.: J. Phys. Rev. Lett.63 (1989) 263. 10.1103/PhysRevLett.63.263 Search in Google Scholar

39. Wood, A. B.: A Textbook of Sound, G. Bell, London, 1941. Search in Google Scholar

40. Barret-Gultepe, M. A. and Yeager, E. B.: J. Phys. Chem.87 (1983) 1039. 10.1021/j100229a024 Search in Google Scholar

Received: 2011-02-26
Published Online: 2013-04-11
Published in Print: 2011-09-01

© 2011, Carl Hanser Publisher, Munich