Accessible Unlicensed Requires Authentication Published by De Gruyter August 22, 2013

Zirconia Supported Iron as an Efficient Green Catalyst for the Selective Liquid Phase Solvent Free Oxidation of Alcohol with Molecular Oxygen

Eisen auf einem Zirkonträger als effektiver grüner Katalysator für die selektive lösemittelfreie Flüssigphasenoxidation von Alkohol mit molekularem Sauerstoff
Mohammad Sadiq, Mohammad Ilyas, Sultan Alam and Humaira Khaliq


Liquid phase oxidation of alcohol to corresponding aldehyde and ketone in solvent free condition with molecular oxygen, at mild temperature and pressure was studied in a self-designed three necked batch reactor, using iron supported on zirconia as a catalyst. The catalyst was prepared by incipient wetness technique, reduced in hydrogen flow and characterized by X-ray Diffractometry, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Thermo Gravimetric and Differential Thermal Analysis, Fourier Transform Infrared Spectroscopy, particle size analyzer, surface area and pore size analyzer. Effects of different parameters such as temperature and time on the rate of reaction were studied. It was observed that the reduced catalyst showed higher catalytic activity and selectivity than the unreduced catalyst for the liquid phase oxidation of alcohols to corresponding aldehydes and ketones.


Die lösemittelfreie Flüssigphasenoxidation von Alkohol zum entsprechenden Aldehyd und Keton mit molekularem Sauerstoff an einem Eisen-Katalysator auf einem Zirkonträger wurde in einem selbstkonstruierten Dreihalsbatchreaktor bei milder Temperatur und Druck untersucht. Der Katalysator wurde zuerst nasschemisch hergestellt, dann im Wasserstoffstrom reduziert und mittels Röntgendiffraktometrie, Rasterelektronenmikroskopie (SEM), energiedispersiver Röntgenmikrobereichsanalyse (EDX), Thermogravimetrie, Differentialthermoanalyse (DTA), Fourier-Transform-Infrarotspektroskopie (FT-IR), Partikelgrößenanalyse, Oberflächen- und Porengrößeanalyse untersucht. Die Einflüsse verschiedener Parameter auf die Geschwindigkeit der Reaktion (wie Temperatur und Zeit) wurden untersucht. Man konnte beobachten, dass der reduzierte Katalysator eine höhere katalytische Aktivität und Selektivität bei der Flüssigphasenoxidation von Alkoholen zu Aldehyden und Ketonen besitzt als der nicht reduzierte Katalysator.

3 Dr. Mohammad Sadiq, Department of Chemistry, University of Malakand, Chakdara, Dir(Lower), Pakistan, E-Mail: ,

Dr. Mohammad Sadiq received his M. Sc. (Chemistry) in 2002 from University of Peshawar. He got his M. Phil. and PhD Degree in Physical Chemistry in 2005 and 2009, respectively, from National Center of Excellence in Physical Chemistry, University of Peshawar. He went to Uppsala University, Sweden in 2008 for research project. At present he is working as assistant professor in Department of Chemistry, University of Malakand. His research work focuses on homogeneous, heterogeneous catalysis, photo catalysis, mechanistic studies of catalytic reactions, various batch reactors design, and partial oxidation reaction in both gas and liquid phase and reduction of NOx by metal oxide. Activated carbon from agricultural waste and its characterization for pollution control prepared from agricultural waste material.

Dr. Mohammad Ilyas received his M.Sc. (Chemistry) in 1975 from Department of Chemistry, University of Peshawar. He got M. Phil. in Physical Chemistry in 1979 from National Center of Excellence in Physical Chemistry, University of Peshawar and Ph. D. from National University of Ireland (University College Cork, Cork, Ireland) in 1983. At present he is working as professor in National Center of Excellence in Physical Chemistry, University of Peshawar. Research Interests: Heterogeneous Catalysis, Photocatalysis: Catalysis by metals and metal oxides for oxidation and hydrogenation/dehydrogenation of hydrocarbons. Photo assisted reactions at gas/solid and liquid/solid interfaces. Activated Carbon from Agricultural waste and its characterization for pollution control prepared from agricultural waste material.

Dr. Sultan Alam is Assistant Professor in Physical Chemistry, University of Malakand, at Chakdara, Dir (L), Pakistan. He received his M. Sc. in 1996 and P. hD. in 2008 from Institute of Chemical Sciences, University of Peshawar. His research interest includes, conversion of low cost precursors into activated carbon like agricultural waste material, fast growing wood and animal bones, regeneration of industrial spent carbon, characterization of adsorbents by pH, moisture content, ash content, surface area (BET, DR, BJH, and Langmuir), pore size distribution, FTIR, XRD, SEM and EDS, surface chemistry at solid-liquid interface i. e. Activated carbon, Clays and Soil, removal of organic and in-organic pollutants from aqueous solutions by active adsorbents like activated carbon, clays and soil, breakthrough technique for the utilization of low cost adsorbents into industrial effluents treatments. Monitoring of drinking water quality/industrial effluents and its impacts on human life, exploration of soil contaminants, quantification of nutrients in the indigenous medicinal plants and its impact on the functional regulation of human body activities, determination of metals in the commercially available edible herbs and its therapeutic value, exploration of nutritional status of plants habitat and investigation of food contaminants.

Miss Humaira Khaliq. Research associate in the project of Higher Education Commission of Pakistan


1 Bond, G. C., Flamerz, S. and Shukri, R.: Faraday Dissc. Chem. Soc.87 (1989) 65. Search in Google Scholar

2 Vuurman, M. A. and Wachs, I. E.: J. Phys. Chem.96 (1992) 5008. Search in Google Scholar

3 Thomas, C., Vivier, L., Lemberton, J. L., Kasztelan, S. and Perot, G.: J. Catal.167 (1997) 1. Search in Google Scholar

4 Iwasawa, Y. and Gates, B. C.: Chemtech.173 (1989) 5. Search in Google Scholar

5 Bond, G. C. and Bruckman, K.: Faraday Dissc. Chem. Soc.72 (1981) 235. Search in Google Scholar

6 Shirai, M., Asakura, K. and Iwasawa, Y.: J. Phys. Chem.95 (1991) 9999. Search in Google Scholar

7 Peixoto, C. R. M., Gushikem, Y. and Baccan, N.: Analyst.117 (1992) 1029. Search in Google Scholar

8 Denofre, S., Gushikem, Y. and Davanzo, C. U.: J. Solid State Inorg. Chem.28 (1991) 1295. Search in Google Scholar

9 Datta, A. K., Ha, J. W. and Ragalbuto, J. R.: J. Catal.133 (1992) 55. Search in Google Scholar

10 Soisuwan, P., Chambers, D. C., Trimm, D. L., Mekasuwandumrong, O., Panpranot, J. and Praserthdam, P.: Catal. Lett.103 (2005) 1. Search in Google Scholar

11 Das, D., Mishra, H. K., Dalai, A. K. and Parida, K. M.: Catal. Lett.93 (2004) 186. Search in Google Scholar

12 XuGuang, L., Lunjing, W., YongZhen, V., XingMei, G., HaiRong, W. and Bingshe, X. U.: Chin. Sci. Bull.54 (2009) 137. Search in Google Scholar

13 Zhao, Y., Li, W., Zhang, M. and Tao, K.: Catal. Commun.3 (2002) 239. Search in Google Scholar

14 Reddy, K. M., Balaraju, M., Prasad, P. S. S., Suryanarayana, I. and Lingaiah, N.: Catal. Lett.119 (2007) 304. Search in Google Scholar

15 Castro, L., Reyes, P. and Correa, C. M. D.: J. Sol-Gel. Sci. Technol.25 (2002) 159. Search in Google Scholar

16 Chen, L., Liu, Y. and Li, Y.: J. Alloys Compd.381 (2004) 266.10.1016/j.jallcom.2009.06.101 Search in Google Scholar

17 D'Souza, L., Saleh-Subaie, J. and Richard, R.: J. Colloid Interface Sci.292 (2005) 476. Search in Google Scholar

18 Zhao, Y., Li, W., Zhang, M. and Tao, K.: Catal. Commun.3 (2002) 239. Search in Google Scholar

19 Hong, S. S., Lee, G. H. and Lee, G. D.: Korean J. Chem. Eng.20 (2002) 440. Search in Google Scholar

20 Haikarainen, T., Paturi, P., Linden, J., Haataja, S., Klauke, W. M., Finne, J. and Papageorgiou, A. C.: J. Biol. Inorg. Chem.16 (2011) 799. Search in Google Scholar

21 Benvenutti, E. V. and Gushikem, Y.: J. Braz. Chem. Soc.9 (1998) 471. Search in Google Scholar

22 Ilyas, M. and Sadiq, M.: Chem. Eng. Technol.30 (2007) 1391. Search in Google Scholar

23 Ilyas, M. and Sadiq, M.: Chin. J. Chem.28 (2010) 2216. Search in Google Scholar

24 Chary, K. V. R., Reddy, K. R., Kishan, G., Niemantsverdriet, J. W. and Mestl, G. J.: Catal.226 (2004) 283. Search in Google Scholar

25 Wang, N., Fang, K., Lin, M., Jiang, D., Li, D. and Sun, Y.: Catal. Lett.136 (2010) 9. Search in Google Scholar

26 Beltran, F. J., Rivas, F. J. and Espinosa, M. D.: Water Res.39 (2005) 3554. Search in Google Scholar

27 Martin, S. E. and Garrone, A.: Tetrahedron Lett. 44 (3) (2003) 549. Search in Google Scholar

28 Kishan, G., Lee, M. W., Nam, S. S., Choi, M. J. and Lee, K. W.: Catal. Lett.56 (1998) 215. Search in Google Scholar

29 Boot, L. E., Dillen, A. J. V., Geus, J. W. and Buren, F. R. V.: J. Catal.163 (1996) 186. Search in Google Scholar

30 Anastas, P. T. and Warner, J. C.: Green Chemistry: Theory and Practice. Oxford University Press: New York, 1998, p. 30. Search in Google Scholar

31 Abad, A., Concepcion, P., Corma, A. and GraciaH.: Angew. Chem.44 (2005) 4066. Search in Google Scholar

32 Centi, G. and Perathoner, S.: Top. Catal.52 (2009) 948. Search in Google Scholar

33 Jung, K. T. and Bell, A. T.: Top. Catal.20 (2002) 97. Search in Google Scholar

34 Picquart, M., Lopez, T., Gomez, R., Torres, E., Moreno, A. and Garcia, J.: J. Therm. Anal. Calorim.76 (2004) 758. Search in Google Scholar

35 Yan, S., Jun, K., Hong, J., Lee, S., Choi, M. and Lee, K.: Korean J. Chem. Eng.16 (1999) 357. Search in Google Scholar

36 Davies, L. E., Bonini, N. A., Locatelli, S. and Gonzo, E. E.: Latin Am. Appl. Res.35 (2005) 24. Search in Google Scholar

37 Aronniemi, M., Lahtinen, J. and Hautojarvi, P.: Surf. Interface Anal.36 (2004) 1005. Search in Google Scholar

Received: 2012-4-24
Revised: 2012-11-1
Published Online: 2013-08-22
Published in Print: 2013-03-15

© 2013, Carl Hanser Publisher, Munich