Abstract
The aim of the present study was to optimise the production of a biosurfactant by a new strain of Pseudomonas cepacia CCT6659 with aid of a combination of central composite rotatable design (CCRD) and response surface methodology (RSM). The factors selected for optimisation of the growth conditions were canola waste frying oil, corn steep liquor and NaNO3 substrate concentrations. Surface tension was chosen as the response variable. All factors studied were important within the ranges investigated. The empirical forecast model developed through RSM regarding effective nutritional factors was adequate for explaining 89 % of the variation observed in biosurfactant production. Maximal reduction in surface tension of 26 mN m–1 was obtained under the optimal conditions of 2 % waste frying oil, 3 % corn steep liquor and 0.2 % NaNO3. The accumulation of isolated biosurfactant increased from 2 g L–1 to 8.0 g L–1 under these conditions, demonstrating that the factorial design is adequate for identifying the optimal conditions for biosurfactant production.
Kurzfassung
Ziel dieser Untersuchung war, die Produktion eines Biotensids aus dem neuen Stamm Pseudomonas cepacia CCT6659 mit Hilfe des “Central Composite Rotatable Design” (CCRD) und der “Response Surface Methodology” (RSM) zu optimieren. Die für die Optimierung der Wachstumsbedingungen ausgewählte Faktoren waren die Konzentrationen des Substrats aus gebrauchtem Fritieraltöl aus Raps, Maisquellwasser und NaNO3. Als Antwortvariable wurde die Oberflächenspannung gewählt. Alle untersuchten Faktoren waren innerhalb des untersuchten Bereichs wichtig. Das mit Hilfe der RSM entwickelte Vorhersagemodell für die effektiven Ernährungsparameter eigente sich zur Erklärung von 89 % der beobachteten Variation in der Biotensidproduktion. Man erhielt eine maximale Reduktion der Oberflächenspannng bei folgender optimaler Bedingung: 2 % Frittiertaltöl, 3 % Maisquellwasser und 0,2 % NaNO3. Unter diesen Bedingugnen lag die Anreicherung des isolierten Biotensids zwischen 2 g L–1 bis 8,0 g L–1, womit gezeigt werden konnte, dass die faktorielle Versuchsplanung geeignet ist, die optimalen Bedingugnen der Biotensidproduktion zu ermitteln.
References
1 Desai, J. D. and Banat, I. M.: Microbiol. Mol. Biol. Rev.61 (1997) 47.Search in Google Scholar
2 Oliveira, F. J. S., Vazquez, L., CamposN.P. and Franaa, F. P.: Process Biochem.44 (2009) 383.Search in Google Scholar
3 Nitschke, M., Costa, S. G. V. A. O. and Contiero, J.: Biotechnol. Prog.21 (2005) 1593.Search in Google Scholar
4 Cameotra, S. S. and Makkar, R. S.: Appl. Microbiol. Biotechnol.50 (1998) 520.Search in Google Scholar
5 Makkar, R. S. and Cameotra, S. S.: Appl. Microbiol. Biotechnol.58 (2002) 428.Search in Google Scholar
6 Hewald, S., Joseph, K., and Bolker, M.: Appl. Environ. Microbiol.71 (2005) 3033.Search in Google Scholar
7 Mulligan, C. N.: Eng. Geol.60 (2005) 371.Search in Google Scholar
8 Mukherjee, S., Das, P. and Sen, R.: Trends Biotechnol.24 (2006) 509.Search in Google Scholar
9 Abouseoud, M., Maachi, R., Amrane, A., Boudergua, S. and NabiA.: Desalination223 (2008) 143.Search in Google Scholar
10 Wei, Y. H. and Chu, I. M.: Enzyme Microb. Technol.22 (1998) 724.Search in Google Scholar
11 Xiong, Y. H., Liu, J. Z., Song, H. Y. and Ji, L. N.: Biochem. Eng. J.21 (2004) 27.Search in Google Scholar
12 Kalil, S. J., Maugeri, F. and Rodrigues, M. I.: Process Biochem.35 (2000) 539.Search in Google Scholar
13 Montgomery, D. C.: John Wiley, Singapore (1996).Search in Google Scholar
14 Box, G. E. P. and Drapper, N. R.: Wiley, New York (2007).Search in Google Scholar
15 StatSoft, Inc Statistica (data analysis software system), version 6.0 (2004)Search in Google Scholar
16 Costa, S. G. V. A. O., Nitschke, M., Haddad, R., Eberlin, M. N. and Contiero, J.: Process Biochem.21 (2005) 1593.Search in Google Scholar
17 Strobel, R. J. and Sullivan, G. R., in: Demain, A. L., Davies, J. E.: (Eds.), Manual of Industrial Microbiology and BiotechnologyASM Press, Washington D. C., (1999) 80.Search in Google Scholar
18 Khuri, A. I. and Cornell, J. A.: Dekker, New York (1987).Search in Google Scholar
19 Barros-Neto, B., Scarminio, I. S. and Bruns, R. E.: State University of Campinas, Campinas, (1995).Search in Google Scholar
20 Box, G. E. P. and Wetz, J.: University of Wisconsin Technical Report, Madison9 (1973).Search in Google Scholar
21 Silva, S. N. R. L., Farias, C. B. B., Rufino, R. D., Luna, J. M. and Sarubbo, L. A.: Colloids Surfaces B: Biointerf.79 (2010) 174.10.1016/j.colsurfb.2010.03.050Search in Google Scholar PubMed
22 Wei, Y. H., Chou, C. L. and Chang, J. S.: Biochem. Eng. J.27 (2005) 146.Search in Google Scholar
23 CostaS. G. V. A. O., Souza, S. R., Nitschke, M., Franchetti, S. M. M., JafelicciJr., M.Lovaglio, R. B. and Contiero, J.: J. Surfact. Deterg.12 (2009) 125.Search in Google Scholar
24 Sousa, J. R., Correia, J. A. C., Almeida, J. G. L., Rodrigues, S., Pessoa, O. D. L., Melo, V. M. M. and Gonaalves, R. L. B.: Process Biochem.46 (2011) 1831.Search in Google Scholar
25 Manresa, M. A., Bastida, J., Mercade, M. E., Robert, M., Andres, C., Espuny, M. J. and Guinea, J.: J. Ind. Microbiol.8 (1991) 133.Search in Google Scholar
26 Mulligan, C. N. and Gibbs, B. F.: Appl. Environ. Microbiol.55 (1989) 3016.Search in Google Scholar
© 2013, Carl Hanser Publisher, Munich