Accessible Requires Authentication Published by De Gruyter September 9, 2013

Surface and Interfacial Performance of Unsaturated Octadecyl Carboxybetaine

Oberflächen- und Grenzflächenleistung des ungestättigen Octadecylcarboxybetains
Shuangjian Dong, Yunling Li, Jinping Niu and Xiaochen Liu


The surface tension of the unsaturated octadecyl carboxybetaine aqueous solution, and the interfacial tension between crude oil and surfactant solutions prepared by formation water were measured. Meanwhile, solutions of the corresponding saturated octadecyl carboxybetaine were prepared and determined for comparison. The effect of surfactant concentration, Na+ concentration, and Ca2+ concentration on the interfacial behavior of crude oil-water were investigated in detail. The results showed that the critical micelle concentration of unsaturated octadecyl carboxybetaine was higher but the surface tension at critical micelle concentration was lower than the corresponding saturated octadecyl carboxybetaine. Compared to the saturated betaine, the interfacial tension of unsaturated octadecyl carboxy betaine could reach to ultralow values (10–3 mN · m–1) at lower surfactant concentration and at higher Na+ concentration and Ca2+ concentration.


Die Oberflächenspannung des ungesättigten Octadecylcarboxybetains in wässriger Lösung und die Grenzflächenspannung zwischen Rohöl und elektrolythaltiger Tensidlösungen (formation water) wurden gemessen. Für Vergleichszwecke wurden parallel dazu Lösungen des entsprechenden gesättigten Octadecylcarboxybetains hergestellt und vermessen. Der Einfluss der Tensidkonzentration, der Na+-Konzentration und der Ca2+-Konzentration auf das Grenzflächenverhalten von Rohöl und Wasser wurden detailliert bestimmt. Die Ergebnisse zeigten, dass die kritische Mizellbildungskonzentration geringer war als die des entsprechenden gesättigten Octadecylcarboxybetains. Die Grenzflächenspannung des ungesättigten Octadecylcarboxybetains konnte bei geringeren Tensidkonzentrationen und höheren Na+- und Ca2+-Konzentrationen ultraniedrige Werte (10–3 mN · m–1) annehmen.

5 Dr. Yunling Li, China Research Institute of Daily Chemical Industry, 34# Wenyuan Str. Taiyuan, Shanxi Province, P.R. China: 030001, Tel.: 086-0351-4046827, Fax: 086-0351-4040802, E-Mail:

Shuang-jian Dong received a B.Sc. in Applied Chemistry from the China University of Petroleum, P.R. China in 2010 and is currently an M.Sc. Student in Applied Chemistry, China Research Institute of Daily Chemical Industry, P.R. China. He is involved in synthesis and applications of new surfactants for EOR.

Yun-ling Li received a Ph. D in Applied Chemistry from the Shanxi University, P.R. China and is currently a professor of engineering in the China Research Institute of Daily Chemical Industry, P.R. China. Her research interests include surfactants and industrial catalysis.

Jin- ping Niu is currently a professor of engineering in the China Research Institute of Daily Chemical Industry, P.R. China.

Xiao-chen Liu is currently an engineer in the China Research Institute of Daily Chemical Industry, P.R. China.


1. Youssef, T., Vladimir, H. and Graham, H. N.: Colloids and Surfaces A.132 (1998) 61. Search in Google Scholar

2. Cookker Jr., C. E., Williams, R. E. and Kolodzie, P. A.: J. Pet. Technol.26 (1974) 1356. Search in Google Scholar

3. Jennings, H. Y., Johnson, J. C. E. and McAuliffe, C. D.: J. Pet. Tech.26 (1974) 1344. Search in Google Scholar

4. Castor, T. P., Somerton, W. H. and Kelly, J. F.: Recovery mechanism of alkaline flooding, in: ShahD. O. (Ed.), Surface Phenomena in Enhanced Oil Recovery, Plenum Press, New York (1981) 249. Search in Google Scholar

5. Yang, J., Qiao, W., Li, Z. and Cheng, L.: Fuel84 (2005) 1607. Search in Google Scholar

6. Li, N., Zhang, G. C., Ge, J. J., Jin, L. C., Zhang, J. Q. and Pei, H. H.: Energy and Fuels.25 (2011) 4430. Search in Google Scholar

7. Zhang, L., Luo, L., Zhao, S. and Yu, J. Y.: J. Colloid Interface Sci.249 (2002) 187. Search in Google Scholar

8. Zhao, Z. K., Liu, F., Qiao, W. H., Li, Z. S. and Cheng, L. B.: Fuel85 (2006) 1815. Search in Google Scholar

9. Zhao, Z. K., Liu, F., Qiao, W. H., Li, Z. S. and Cheng, L. B.: Colloids Surf. A276 (2006) 186. Search in Google Scholar

10. Rudin, J. and Wasan, D. T.: Ind. Eng. Chem. Res.3 (1992) 1899. Search in Google Scholar

11. Chu, Y. P., Gong, Y., Tan, X. L., Zhang, L., Zhao, S., An, J. Y. and Yu, J. Y.: J. Colloid Interface Sci.276 (2004) 182. Search in Google Scholar

12. Zhao, Z. K., Bi, C. G., Qiao, W. H., Li, Z. S. and Cheng, L. B.: Colloids Surf. A294 (2007) 191. Search in Google Scholar

13. Aoudia, M., Shibli, M. N., Kasimi, L. H., Maamari, R. and Bemani, A.: J. Surfact. Deterg.9 (2006) 287. Search in Google Scholar

14. Wang, D., Liu, C., Wu, W. and Wang, G.: SPE EOR conference at oil and gas West Asia 2010, OGWA-EOR challenges, experiences and opportunities in the Middle East (2010), Muscat, Oman. Search in Google Scholar

15. Jiang, P., Ge, J. J., Zhang, G. C., Ding, B. D. and Liu, X. L.: J. Chin Univ Petrol (Ed. Nat. Sci.)35 (2011) 166. Search in Google Scholar

16. Deng, M. L., Li, J., Liu, J., Ma, X. J. and Wang, Y. L.: Colloids Surf. A356 (2010) 97. Search in Google Scholar

17. Han, L. J., Ye, Z. B., Chen, H. and Luo, P. Y.: J. Surfact. Deterg.12 (2009) 185. Search in Google Scholar

18. Zhao, G. X. and Zhu, B. Y.: Principles of surfactant action, China Light Industry Press, Beijing (2003). Search in Google Scholar

19. Qiao, W. H., Li, J., Zhu, Y. Y. and Cai, H. Y.: Fuel96 (2012) 220. Search in Google Scholar

Received: 2012-9-13
Revised: 2012-10-31
Published Online: 2013-09-09
Published in Print: 2013-07-15

© 2013, Carl Hanser Publisher, Munich