Accessible Requires Authentication Published by De Gruyter September 9, 2013

Interaction of Cationic CTAB Surfactant with Curcumin, an Anticarcinogenic Drug: Spectroscopic Investigation

Wechselwirkung zwischen mit kationischen Tensid CTAB und dem antikarzinogenen Wirkstoff Curcumin: Spektroskopische Untersuchung
Rakesh Sharma and Dipti Jani

Abstract

Curcumin, the most active polyphenolic constituent of turmeric cucuminoids obtained from rhizome Curcuma longa, holds a high place in ayurvedic medicine but its role in conventional disease management is also established. Unfortunately, the compound has poor aqueous solubility, which results in poor bioavailability following high doses by oral administration. In order to enhance its effectiveness and improve bioavailability, surfactant assemblies as the colloidal drug carriers with desired properties have been largely utilized. The interaction of curcumin with cetyltrimethylammonium bromide (CTAB) surfactant has been investigated by absorption spectroscopy as a function of surfactant concentration in pre-micellar and micellar range at acidic pH of 6.4. The pre-micellar and micellar region of pure CTAB surfactant at acidic pH of 6.4 is examined through tensiometry and conductometry techniques. Spectral data shows that in presence of curcumin at lower CCTAB, the change in absorbance and peak form initially was assigned to attraction of positive head group of CTAB towards the β-diketone group of drug. In micellar region including CMC, the type of interaction corresponds to the attachment of C16 chains of CTAB to nonpolar aryl groups of drug and simultaneously displacement of polar head group from β-diketone group of the drug. Finally at post micellar CCTAB, the encapsulation of the curcumin into micelles, predominantly in intact monomeric form is observed with the sharp peak at λmax = 423 nm.

Kurzfassung

Curcumin, die aktivste polyphenolische Verbindung unter den Gelbwurzel Cucminoiden, wird aus dem Wurzelstock Curcuma longa erhalten und hat in der ayurvedischen Medizin einen hohen Stellenwert; ist aber auch in der konventionellen Krankenbehandlung etabliert. Leider ist die Verbindung schlecht wasserlöslich, was zu einer schlechten Bioverfügbarkeit und daher zu hoher Dosierung bei der oralen Verabreichung führt. Zur Erhöhung seiner Wirksamkeit und zur Verbesserung der Bioverfügbarkeit wurden Tensidaggregate als kolloidale Wirkstoffträger mit gewünschten Eigenschaften umfangreich eingesetzt. Die Wechselwirkung von Curcumin mit Cetyltrimethylammoniumbromid (CTAB) wurde abhängig von der Tensidkonzentration im vormizellaren und mizellaren Bereich bei pH 6,4 mit der Absorptionsspektroskopie untersucht. Der vormizellare und mizellare Bereich des reinen CTAB wurde bei pH 6,4 tensiometrisch und konduktometrisch untersucht. Die spektralen Daten zeigen, dass bei Anwesenheit von Curcumin bei niedrigen CTAB-Konzentrationen die Veränderung von Extinktion und ursprünglicher Peakform von der Anziehung der positiven CTAB-Kopfgruppe zur β-Diketongruppe des Wirkstoffs bestimmt wurde. Im mizellaren Bereich einschließlich der CMC, entspricht der Wechselswirkungstyp der Anlagerung der C16-Ketten des CTAB an die unpolaren Arylgruppen des Wirkstoffs bei gleichzeitiger Entfernung der polaren Kopfgruppen von den β-Diketongruppen des Wirkstoffs. Letzlich wird in der post-mizellaren Region des CTAB aufgrund des scharfen Peaks bei λmax = 423 nm beobachtet, dass Curcumin überwiegend in der intakten monomeren Form in die Mizellen eingeschlossen ist.


1 Dr. Rakesh K. Sharma, Assistant Professor, Applied Chemistry Department, Faculty of Technology & Engineering, The Maharaja Sayajirao University of Baroda, Post Box no. 51, Kala Bhavan, Vadodara-390001 (Gujarat) India, Tel.: (O)+912652434188 (M)+919228499273, Fax: 02652423898, E-Mail:

Dr. Rakesh K. Sharma, M.Sc., M. Phil., Ph.D., is the Assistant Professor in the Applied Chemistry Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara, Gujarat, India. His research interests are in aggregation and phase behavior of surfactants and EO-PO based block copolymers and its application in drug delivery and detergency. He has published more than ten research papers in reputed international journals.

Dipti Jani, M.Sc., is a project student in the Applied Chemistry Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara, Gujarat, India. She is working in the area of applications of surfactants in pharmaceutical sciences.


References

1. Aggarwal, B. B., Sundaram, C., Malani, N. and Ichikawa, H.: Curcumin: The Indian Solid Gold, Adv. Exp. Med. Biol.595 (2007) 175. Search in Google Scholar

2. Tang, C. H., Lee, C. Y. and Huang, M. T.: Phenolic Compounds in Food and Their Effects on Health I., Washington DC, ACS Symposium Series 506, American Chemical Society (1992). Search in Google Scholar

3. Kita, T., Imai, S., Sawada, H., Kumagai, H. and Seto, H.: Biosci. Biotechnol. Biochem.72 (2008) 17891798. Search in Google Scholar

4. Anand, P., Sundaram, C., Jhurani, S., Kunnumakkara, A. B. and Aggarwal, B. B.: Curcumin and Cancer: An “old-age” disease with an “age-old” solution, Cancer Lett.267 (2008) 133164. Search in Google Scholar

5. Teiten, M. H., Eifes, S., Dicato, M. and Diederich, M.: Curcumin-The Paradigm of a Multi-Target Natural Compound with Applications in Cancer Prevention and Treatment, Toxins2 (2010) 128162. Search in Google Scholar

6. Hatcher, H., Planalp, R., Cho, J., Torti, F. M. and Torti, S. V.: Cell. Mol. Life Sci.65 (2008) 16311652. Search in Google Scholar

7. Sharma, R. A., Gescher, A. J. and Steward, W. P.: Eur. J. Cancer41 (2005) 19551968. Search in Google Scholar

8. Nardo, L., Andreini, A., Masson, M., Haukvik, T. and Tønnesen, H. H.: J. Fluoresc.21 (2011) 627635. Search in Google Scholar

9. Nardo, L., Andreini, A. and Tønnesen, H. H.: In Hydrogen Bonding and Transfer in the Excited State; New York, John Wiley & Sons (2010) pp. 353375. Search in Google Scholar

10. Patra, D. and Barakat, C.: Spectrochim. ActaA79 (2011) 10341041. Search in Google Scholar

11. Bong, P. H.: Bull. Korean Chem. Soc.1 (2000) 8186. Search in Google Scholar

12. Chignell, C. F., Bilski, P., Reszka, K. J., Motten, A. G., Sik, R. H. and Dahl, T. A.: Photochem. Photobiol.59 (1994) 295302. Search in Google Scholar

13. Wang, Y. J., Pan, M. H., Cheng, A. L., Lin, L. I., Ho, Y. S., Hsich, C. Y. and Lin, J. K.: J. Pharm. Biomed. Anal.15 (1997) 1867. Search in Google Scholar

14. Rangel-Yagui, C., Pessoa, Jr.A. and Tavares, L. C.: J. Pharm. Pharmaceut. Sci.8 (2005) 147163. Search in Google Scholar

15. Leung, M. H. M., Colangelo, H. and Kee, T. W.: Langmuir24 (2008) 56725675. Search in Google Scholar

16. Dan, K., Wang, X, Yang, Q., Niu, Y., Chai, S., Chen, Z., An, X. and Shen, W.: Langmuir27 (2011) 1411214117. Search in Google Scholar

17. Iwunze, M. O.: J. Mol. Liquids111 (2004) 161165. Search in Google Scholar

18. Jain, D. V. S. and Singh, S.: Indian J. Chem.10 (1972) 629. Search in Google Scholar

19. Lah, J., Pohar, C. and Vesnaver, G.: J. Phys. Chem.B104 (2000) 2522. Search in Google Scholar

20. Tedeschi, A. M., Franco, L., Ruzzi, M., Paduano, L., Corvajaand, C. and D’Errico, G.: Phys. Chem. Chem. Phys.5 (2003) 42044209. Search in Google Scholar

21. Xiaoli, T., Zhang, L., Zhao, S., Jiayong, Y. and Jingyi, A.: J. of Surfactant Detergents7 (2004) 2. Search in Google Scholar

22. Tonnesen, H. H.: Pharmazie 57(12) (2002) 820-824. Search in Google Scholar

23. Zsila, F., Bikadi, Z. and Simonyi, M.: Tetrahedron Asymmetry14 (2003) 24332444. Search in Google Scholar

24. Wang, Z. F., Leung, M. H. M., Kee, T. W. and English, D. S.: Langmuir26 (2010) 55205526. Search in Google Scholar

Received: 2013-2-24
Revised: 2013-3-28
Published Online: 2013-09-09
Published in Print: 2013-07-15

© 2013, Carl Hanser Publisher, Munich