Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 17, 2014

Percolative Behavior Models Based on Artificial Neural Networks for Electrical Percolation of AOT Microemulsions in the Presence of Crown Ethers as Additives

Perkolative Verhaltensmodelle auf Basis künstlicher neuronaler Netzwerke für die elektrische Perkolation von AOT-Mikroemulsionen in Anwesenheit von Kronenethern als Additive
Óscar A. Moldes, Antonio Cid, Gonzalo Astray and Juan C. Mejuto


A series of models, based on artificial neural networks, of the percolative behaviour of AOT microemulsions in the presence of crown ethers as additives have been developed. Input variables, related to the chemical structure of crown ethers and their packing with surfactant film, have been selected. As a result, a model has been chosen with a good forecast capability for percolation threshold of such microemulsions.


Eine auf neuronalen Netzwerken basierende Modellreihe, die das perkolative Verhalten von AOT-Mikroemulsionen in Gegenwart von Kronenethern als Additive beschreibt, wurde entwickelt. Die Eingangsvariablen wurden hinsichtlich der chemischen Struktur der Kronenether und ihrer Packung im Tensidfilm ausgewählt. Es wurde ein Modell bestimmt, mit dem sich die Perkolationsschwelle solcher Mikroemulsionen gut vorhersagen lässt.

* Correspondence address, Mr. Dr. O. A. Moldes, Physical-Chemistry Department, Faculty of Sciences, University of Vigo, Ourense, 32004, Spain. Tel.: 00 34-9 88 38 70 00, Fax: 00 34-9 88 38 70 01, E-Mail:

Juan Carlos Mejuto actually is Full Professor in the Physical Chemistry Department of University of Vigo at Ourense Campus. He is the head of the Colloids group at Ourense Campus. His research interest comprises (i) physical organic and physical inorganic chemistry, (ii) reactivity mechanisms in homogeneous and microheterogeneous media, (iii) stability of self-assembly aggregates and (iv) supramolecular chemistry.

Gonzalo Astray take his PhD at University of Vigo, actually he has got a Post-Doctoral Position at Ohio University (USA). His research interest is focused in the applications of Artificial Neural Networks to chemical and biological problems.

Oscar Adrían Moldes take his PhD at Colloid Chemistry Group at the Faculty of Sciences at Ourense (University of Vigo). His research interest is focused in the internal dynamics of self-assembly colloids, in particular percolative phenomena in microemulsions.

Antonio Cid take his PhD at Colloid Chemistry Group at the Faculty of Sciences at Ourense (University of Vigo) and actually he has got a Post-Doctoral Position at REQUIMTE-CQFB (New University of Lisbon). His research interest is focused in the internal dynamics of self-assembly colloids, in particular percolative phenomena in microemulsions.


1. Montoya, I. A., AstrayG., Cid, A., Manso, J. A., Moldes, O. A. and Mejuto, J. C.: Influence prediction of small organic molecules (ureas and thioureas) upon electrical percolation of AOT-based microemulsions using artificial neural networks, Tenside Surf. Det.49 (2012) 316320. 10.3139/113.110197Search in Google Scholar

2. Cid, A., Astray, G., Manso, J. A., Mejuto, J. C. and Moldes, O. A.: Artificial intelligence for electrical percolation of AOT-based microemulsions prediction, Tenside Surf. Det.48 (2011) 477483. 10.3139/113.110155Search in Google Scholar

3. Moldes, O. A., Astray, G., Cid, A., Iglesias-Otero, M. A., Morales, J. and Mejuto, J. C.: Percolation threshold of AOT microemulsions with n-alkyl acids as additives prediction by means of artificial neural networks, Tenside Surf. Det.50 (2013) 360368. 10.3139/113.110268Search in Google Scholar

4. Feldman, Y., Kozlovich, N., Nir, I. and Garti, N.: Dielectric relaxation in sodium bis(2-ethylhexyl)sulfosuccinate-water-decane microemulsions near the percolation temperature threshold, J. Phys. Rev. E51 (1995) 478491. 10.1103/PhysRevE.51.478Search in Google Scholar

5. Liu, J., Zhang, X. and ZhangH.: Water/AOT/IPM/alcohol reverse microemulsions: influence of salts and nonionic surfactants on structure and percolation behavior, J. Chem. Thermodynamics72 (2014) 18. 10.1016/j.jct.2013.12.026Search in Google Scholar

6. Eicke, H. F., Bercovec, M. and Das-Gupta, B.: Conductivity of water-in-oil microemulsions: a quantitative charge fluctuation model, J. Phys. Chem.93 (1989) 314317. 10.1021/j100338a062Search in Google Scholar

7. Kirkpatrick, S.: Classical transport in disordered media: scaling and effective-medium theories, Physi. Rev. Lett.27 (1971) 17221725. 10.1103/PhysRevLett.27.1722Search in Google Scholar

8. Bernasconi, J. and Weismann, H. J.: Effective-medium theories for site-disordered resistance networks, Phys. Rev. B13 (1976) 11311139. 10.1103/PhysRevB.13.1131Search in Google Scholar

9. Granqvist, C. G. and Hunderi, O.: Conductivity of inhomogeneous materials: effective-medium theory with dipole-dipole interaction, Phys. Rev. B18 (1978) 15541561. 10.1103/PhysRevB.18.1554Search in Google Scholar

10. Paul, S., Bisal, S. and Moulik, S. P.: Physicochemical studies on microemulsions: test of the theories of percolation, J. Phy. Chem-US.96 (1992) 896901. 10.1021/j100181a067Search in Google Scholar

11. Hattori, Y., Ushiki, H., Engl, W., Courbin, L. and PanizzaP.: Electrical percolation in the presence of attractive interactions: an effective medium lattice approach applied to microemulsion systems, Physica A353 (2005) 2927. 10.1016/j.physa.2005.01.040Search in Google Scholar

12. van Bommel, A., MacIsaac, G., Livingstone, N. and PalepuR.: Dynamics of percolation and energetics of clustering of water/AOT/isooctane microemulsions in the presence of propylene glycol and its oligomers, Fluid Phase Equilibr.237 (2005) 5967. 10.1016/j.fluid.2005.08.015Search in Google Scholar

13. Paul, B. K. and Mitra, R. K.: Percolation phenomenon in mixed reverse micelles: the effect of additives, J. Colloid Interf. Sci.295 (2006) 230242. 10.1016/j.jcis.2005.07.072Search in Google Scholar

14. Dasilva-Carvalhal, J., García-Río, L., Gómez-Díaz, D, Mejuto, J. C. and Rodríguez-Dafonte, P.: Influence of crown ethers on the electric percolation of AOT/isooctane/water (w/o) microemulsions, Langmuir19 (2003) 59755983. 10.1021/la026857 mSearch in Google Scholar

15. Dasilva-Carvalhal, J., Fernández-GándaraD., García-Río, L. and Mejuto, J. C.: Influence of aza crown ethers on the electric percolation of AOT/isooctane/water (w/o) microemulsions, J. Colloid Interf. Sci.301 (2006) 637643. 10.1016/j.jcis.2006.05.050Search in Google Scholar

16. Hait, S. K., Moulik, S. P., and Palepu, R.: Refined method of assessment of parameters of micellization of surfactants and percolation of w/o microemulsions, Langmuir18 (2002) 24712476. 10.1021/la0110794Search in Google Scholar

17. Funahashi, K.-I.: On the approximate realization of continuous mappings by neural networks, Neural Networks2 (1989) 183192. 10.1016/0893-6080(89)90003-8Search in Google Scholar

18. Hornik, K., Stinchcombe, M. and White, H.: Multilayer feedforward networks are universal approximators, Neural Networks2 (1989) 359366. 10.1016/0893-6080(89)90020-8Search in Google Scholar

19. García-Río, L., Hervés, P., Leis, J. R. and Mejuto, J. C.: Influence of crown ethers and macrocyclic kryptands upon the percolation phenomena in AOT/isooctane/H2O microemulsions, Langmuir13 (1997) 60836087. 10.1021/la970297nSearch in Google Scholar

Received: 2014-06-06
Accepted: 2014-07-18
Published Online: 2014-11-17
Published in Print: 2014-11-17

© 2014, Carl Hanser Publisher, Munich

Scroll Up Arrow